LostTech.TensorFlow : API Documentation

Type Dataset

Namespace tensorflow.compat.v2.data

Parent PythonObjectContainer

Interfaces Trackable, CompositeTensor, IDataset

Public static methods

Dataset from_generator(PythonFunctionContainer generator, DType output_types, PythonClassContainer output_shapes, Nullable<ValueTuple> args)

Creates a `Dataset` whose elements are generated by `generator`.

The `generator` argument must be a callable object that returns an object that supports the `iter()` protocol (e.g. a generator function). The elements generated by `generator` must be compatible with the given `output_types` and (optional) `output_shapes` arguments. NOTE: The current implementation of `Dataset.from_generator()` uses tf.numpy_function and inherits the same constraints. In particular, it requires the `Dataset`- and `Iterator`-related operations to be placed on a device in the same process as the Python program that called `Dataset.from_generator()`. The body of `generator` will not be serialized in a `GraphDef`, and you should not use this method if you need to serialize your model and restore it in a different environment.

NOTE: If `generator` depends on mutable global variables or other external state, be aware that the runtime may invoke `generator` multiple times (in order to support repeating the `Dataset`) and at any time between the call to `Dataset.from_generator()` and the production of the first element from the generator. Mutating global variables or external state can cause undefined behavior, and we recommend that you explicitly cache any external state in `generator` before calling `Dataset.from_generator()`.
Parameters
PythonFunctionContainer generator
A callable object that returns an object that supports the `iter()` protocol. If `args` is not specified, `generator` must take no arguments; otherwise it must take as many arguments as there are values in `args`.
DType output_types
A nested structure of tf.DType objects corresponding to each component of an element yielded by `generator`.
PythonClassContainer output_shapes
(Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element yielded by `generator`.
Nullable<ValueTuple> args
(Optional.) A tuple of tf.Tensor objects that will be evaluated and passed to `generator` as NumPy-array arguments.
Returns
Dataset

Show Example
import itertools
            tf.compat.v1.enable_eager_execution() 

def gen(): for i in itertools.count(1): yield (i, [1] * i)

ds = tf.data.Dataset.from_generator( gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))

for value in ds.take(2): print value # (1, array([1])) # (2, array([1, 1]))

Dataset from_generator(PythonFunctionContainer generator, PythonClassContainer output_types, PythonClassContainer output_shapes, Nullable<ValueTuple> args)

Creates a `Dataset` whose elements are generated by `generator`.

The `generator` argument must be a callable object that returns an object that supports the `iter()` protocol (e.g. a generator function). The elements generated by `generator` must be compatible with the given `output_types` and (optional) `output_shapes` arguments. NOTE: The current implementation of `Dataset.from_generator()` uses tf.numpy_function and inherits the same constraints. In particular, it requires the `Dataset`- and `Iterator`-related operations to be placed on a device in the same process as the Python program that called `Dataset.from_generator()`. The body of `generator` will not be serialized in a `GraphDef`, and you should not use this method if you need to serialize your model and restore it in a different environment.

NOTE: If `generator` depends on mutable global variables or other external state, be aware that the runtime may invoke `generator` multiple times (in order to support repeating the `Dataset`) and at any time between the call to `Dataset.from_generator()` and the production of the first element from the generator. Mutating global variables or external state can cause undefined behavior, and we recommend that you explicitly cache any external state in `generator` before calling `Dataset.from_generator()`.
Parameters
PythonFunctionContainer generator
A callable object that returns an object that supports the `iter()` protocol. If `args` is not specified, `generator` must take no arguments; otherwise it must take as many arguments as there are values in `args`.
PythonClassContainer output_types
A nested structure of tf.DType objects corresponding to each component of an element yielded by `generator`.
PythonClassContainer output_shapes
(Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element yielded by `generator`.
Nullable<ValueTuple> args
(Optional.) A tuple of tf.Tensor objects that will be evaluated and passed to `generator` as NumPy-array arguments.
Returns
Dataset

Show Example
import itertools
            tf.compat.v1.enable_eager_execution() 

def gen(): for i in itertools.count(1): yield (i, [1] * i)

ds = tf.data.Dataset.from_generator( gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))

for value in ds.take(2): print value # (1, array([1])) # (2, array([1, 1]))

Dataset from_generator(PythonFunctionContainer generator, PythonClassContainer output_types, int output_shapes, Nullable<ValueTuple> args)

Creates a `Dataset` whose elements are generated by `generator`.

The `generator` argument must be a callable object that returns an object that supports the `iter()` protocol (e.g. a generator function). The elements generated by `generator` must be compatible with the given `output_types` and (optional) `output_shapes` arguments. NOTE: The current implementation of `Dataset.from_generator()` uses tf.numpy_function and inherits the same constraints. In particular, it requires the `Dataset`- and `Iterator`-related operations to be placed on a device in the same process as the Python program that called `Dataset.from_generator()`. The body of `generator` will not be serialized in a `GraphDef`, and you should not use this method if you need to serialize your model and restore it in a different environment.

NOTE: If `generator` depends on mutable global variables or other external state, be aware that the runtime may invoke `generator` multiple times (in order to support repeating the `Dataset`) and at any time between the call to `Dataset.from_generator()` and the production of the first element from the generator. Mutating global variables or external state can cause undefined behavior, and we recommend that you explicitly cache any external state in `generator` before calling `Dataset.from_generator()`.
Parameters
PythonFunctionContainer generator
A callable object that returns an object that supports the `iter()` protocol. If `args` is not specified, `generator` must take no arguments; otherwise it must take as many arguments as there are values in `args`.
PythonClassContainer output_types
A nested structure of tf.DType objects corresponding to each component of an element yielded by `generator`.
int output_shapes
(Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element yielded by `generator`.
Nullable<ValueTuple> args
(Optional.) A tuple of tf.Tensor objects that will be evaluated and passed to `generator` as NumPy-array arguments.
Returns
Dataset

Show Example
import itertools
            tf.compat.v1.enable_eager_execution() 

def gen(): for i in itertools.count(1): yield (i, [1] * i)

ds = tf.data.Dataset.from_generator( gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))

for value in ds.take(2): print value # (1, array([1])) # (2, array([1, 1]))

Dataset from_generator(PythonFunctionContainer generator, IDictionary<string, object> output_types, TensorShape output_shapes, Nullable<ValueTuple> args)

Dataset from_generator(PythonFunctionContainer generator, IEnumerable<object> output_types, TensorShape output_shapes, Nullable<ValueTuple> args)

Dataset from_generator(PythonFunctionContainer generator, DType output_types, TensorShape output_shapes, Nullable<ValueTuple> args)

Dataset from_generator(PythonFunctionContainer generator, PythonClassContainer output_types, TensorShape output_shapes, Nullable<ValueTuple> args)

Dataset from_generator(PythonFunctionContainer generator, PythonClassContainer output_types, IEnumerable<object> output_shapes, Nullable<ValueTuple> args)

Creates a `Dataset` whose elements are generated by `generator`.

The `generator` argument must be a callable object that returns an object that supports the `iter()` protocol (e.g. a generator function). The elements generated by `generator` must be compatible with the given `output_types` and (optional) `output_shapes` arguments. NOTE: The current implementation of `Dataset.from_generator()` uses tf.numpy_function and inherits the same constraints. In particular, it requires the `Dataset`- and `Iterator`-related operations to be placed on a device in the same process as the Python program that called `Dataset.from_generator()`. The body of `generator` will not be serialized in a `GraphDef`, and you should not use this method if you need to serialize your model and restore it in a different environment.

NOTE: If `generator` depends on mutable global variables or other external state, be aware that the runtime may invoke `generator` multiple times (in order to support repeating the `Dataset`) and at any time between the call to `Dataset.from_generator()` and the production of the first element from the generator. Mutating global variables or external state can cause undefined behavior, and we recommend that you explicitly cache any external state in `generator` before calling `Dataset.from_generator()`.
Parameters
PythonFunctionContainer generator
A callable object that returns an object that supports the `iter()` protocol. If `args` is not specified, `generator` must take no arguments; otherwise it must take as many arguments as there are values in `args`.
PythonClassContainer output_types
A nested structure of tf.DType objects corresponding to each component of an element yielded by `generator`.
IEnumerable<object> output_shapes
(Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element yielded by `generator`.
Nullable<ValueTuple> args
(Optional.) A tuple of tf.Tensor objects that will be evaluated and passed to `generator` as NumPy-array arguments.
Returns
Dataset

Show Example
import itertools
            tf.compat.v1.enable_eager_execution() 

def gen(): for i in itertools.count(1): yield (i, [1] * i)

ds = tf.data.Dataset.from_generator( gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))

for value in ds.take(2): print value # (1, array([1])) # (2, array([1, 1]))

object from_generator_dyn(object generator, object output_types, object output_shapes, object args)

Creates a `Dataset` whose elements are generated by `generator`.

The `generator` argument must be a callable object that returns an object that supports the `iter()` protocol (e.g. a generator function). The elements generated by `generator` must be compatible with the given `output_types` and (optional) `output_shapes` arguments. NOTE: The current implementation of `Dataset.from_generator()` uses tf.numpy_function and inherits the same constraints. In particular, it requires the `Dataset`- and `Iterator`-related operations to be placed on a device in the same process as the Python program that called `Dataset.from_generator()`. The body of `generator` will not be serialized in a `GraphDef`, and you should not use this method if you need to serialize your model and restore it in a different environment.

NOTE: If `generator` depends on mutable global variables or other external state, be aware that the runtime may invoke `generator` multiple times (in order to support repeating the `Dataset`) and at any time between the call to `Dataset.from_generator()` and the production of the first element from the generator. Mutating global variables or external state can cause undefined behavior, and we recommend that you explicitly cache any external state in `generator` before calling `Dataset.from_generator()`.
Parameters
object generator
A callable object that returns an object that supports the `iter()` protocol. If `args` is not specified, `generator` must take no arguments; otherwise it must take as many arguments as there are values in `args`.
object output_types
A nested structure of tf.DType objects corresponding to each component of an element yielded by `generator`.
object output_shapes
(Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element yielded by `generator`.
object args
(Optional.) A tuple of tf.Tensor objects that will be evaluated and passed to `generator` as NumPy-array arguments.
Returns
object

Show Example
import itertools
            tf.compat.v1.enable_eager_execution() 

def gen(): for i in itertools.count(1): yield (i, [1] * i)

ds = tf.data.Dataset.from_generator( gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))

for value in ds.take(2): print value # (1, array([1])) # (2, array([1, 1]))

Dataset from_tensor_slices(IEnumerable<object> tensors)

Dataset from_tensors(IEnumerable<object> tensors)

object list_files(IEnumerable<object> file_pattern, Nullable<bool> shuffle, Nullable<int> seed)

A dataset of all files matching one or more glob patterns.

NOTE: The default behavior of this method is to return filenames in a non-deterministic random shuffled order. Pass a `seed` or `shuffle=False` to get results in a deterministic order.

Example: If we had the following files on our filesystem: - /path/to/dir/a.txt - /path/to/dir/b.py - /path/to/dir/c.py If we pass "/path/to/dir/*.py" as the directory, the dataset would produce: - /path/to/dir/b.py - /path/to/dir/c.py
Parameters
IEnumerable<object> file_pattern
A string, a list of strings, or a tf.Tensor of string type (scalar or vector), representing the filename glob (i.e. shell wildcard) pattern(s) that will be matched.
Nullable<bool> shuffle
(Optional.) If `True`, the file names will be shuffled randomly. Defaults to `True`.
Nullable<int> seed
(Optional.) A tf.int64 scalar tf.Tensor, representing the random seed that will be used to create the distribution. See `tf.compat.v1.set_random_seed` for behavior.
Returns
object
Dataset: A `Dataset` of strings corresponding to file names.

object list_files(string file_pattern, Nullable<bool> shuffle, Nullable<int> seed)

A dataset of all files matching one or more glob patterns.

NOTE: The default behavior of this method is to return filenames in a non-deterministic random shuffled order. Pass a `seed` or `shuffle=False` to get results in a deterministic order.

Example: If we had the following files on our filesystem: - /path/to/dir/a.txt - /path/to/dir/b.py - /path/to/dir/c.py If we pass "/path/to/dir/*.py" as the directory, the dataset would produce: - /path/to/dir/b.py - /path/to/dir/c.py
Parameters
string file_pattern
A string, a list of strings, or a tf.Tensor of string type (scalar or vector), representing the filename glob (i.e. shell wildcard) pattern(s) that will be matched.
Nullable<bool> shuffle
(Optional.) If `True`, the file names will be shuffled randomly. Defaults to `True`.
Nullable<int> seed
(Optional.) A tf.int64 scalar tf.Tensor, representing the random seed that will be used to create the distribution. See `tf.compat.v1.set_random_seed` for behavior.
Returns
object
Dataset: A `Dataset` of strings corresponding to file names.

object list_files(IGraphNodeBase file_pattern, Nullable<bool> shuffle, Nullable<int> seed)

object list_files_dyn(object file_pattern, object shuffle, object seed)

A dataset of all files matching one or more glob patterns.

NOTE: The default behavior of this method is to return filenames in a non-deterministic random shuffled order. Pass a `seed` or `shuffle=False` to get results in a deterministic order.

Example: If we had the following files on our filesystem: - /path/to/dir/a.txt - /path/to/dir/b.py - /path/to/dir/c.py If we pass "/path/to/dir/*.py" as the directory, the dataset would produce: - /path/to/dir/b.py - /path/to/dir/c.py
Parameters
object file_pattern
A string, a list of strings, or a tf.Tensor of string type (scalar or vector), representing the filename glob (i.e. shell wildcard) pattern(s) that will be matched.
object shuffle
(Optional.) If `True`, the file names will be shuffled randomly. Defaults to `True`.
object seed
(Optional.) A tf.int64 scalar tf.Tensor, representing the random seed that will be used to create the distribution. See `tf.compat.v1.set_random_seed` for behavior.
Returns
object
Dataset: A `Dataset` of strings corresponding to file names.

Dataset range(Object[] args)

Creates a `Dataset` of a step-separated range of values.
Parameters
Object[] args
follows the same semantics as python's xrange. len(args) == 1 -> start = 0, stop = args[0], step = 1 len(args) == 2 -> start = args[0], stop = args[1], step = 1 len(args) == 3 -> start = args[0], stop = args[1, stop = args[2]
Returns
Dataset

Show Example
Dataset.range(5) == [0, 1, 2, 3, 4]
            Dataset.range(2, 5) == [2, 3, 4]
            Dataset.range(1, 5, 2) == [1, 3]
            Dataset.range(1, 5, -2) == []
            Dataset.range(5, 1) == []
            Dataset.range(5, 1, -2) == [5, 3] 

object range_dyn(Object[] args)

Creates a `Dataset` of a step-separated range of values.
Parameters
Object[] args
follows the same semantics as python's xrange. len(args) == 1 -> start = 0, stop = args[0], step = 1 len(args) == 2 -> start = args[0], stop = args[1], step = 1 len(args) == 3 -> start = args[0], stop = args[1, stop = args[2]
Returns
object

Show Example
Dataset.range(5) == [0, 1, 2, 3, 4]
            Dataset.range(2, 5) == [2, 3, 4]
            Dataset.range(1, 5, 2) == [1, 3]
            Dataset.range(1, 5, -2) == []
            Dataset.range(5, 1) == []
            Dataset.range(5, 1, -2) == [5, 3] 

Dataset zip(IEnumerable<Dataset> datasets)

Creates a `Dataset` by zipping together the given datasets.

This method has similar semantics to the built-in `zip()` function in Python, with the main difference being that the `datasets` argument can be an arbitrary nested structure of `Dataset` objects.
Parameters
IEnumerable<Dataset> datasets
A nested structure of datasets.
Returns
Dataset

Show Example
a = Dataset.range(1, 4)  # ==> [ 1, 2, 3 ]
            b = Dataset.range(4, 7)  # ==> [ 4, 5, 6 ]
            c = Dataset.range(7, 13).batch(2)  # ==> [ [7, 8], [9, 10], [11, 12] ]
            d = Dataset.range(13, 15)  # ==> [ 13, 14 ] 

# The nested structure of the `datasets` argument determines the # structure of elements in the resulting dataset. Dataset.zip((a, b)) # ==> [ (1, 4), (2, 5), (3, 6) ] Dataset.zip((b, a)) # ==> [ (4, 1), (5, 2), (6, 3) ]

# The `datasets` argument may contain an arbitrary number of # datasets. Dataset.zip((a, b, c)) # ==> [ (1, 4, [7, 8]), # (2, 5, [9, 10]), # (3, 6, [11, 12]) ]

# The number of elements in the resulting dataset is the same as # the size of the smallest dataset in `datasets`. Dataset.zip((a, d)) # ==> [ (1, 13), (2, 14) ]

object zip_dyn(object datasets)

Creates a `Dataset` by zipping together the given datasets.

This method has similar semantics to the built-in `zip()` function in Python, with the main difference being that the `datasets` argument can be an arbitrary nested structure of `Dataset` objects.
Parameters
object datasets
A nested structure of datasets.
Returns
object

Show Example
a = Dataset.range(1, 4)  # ==> [ 1, 2, 3 ]
            b = Dataset.range(4, 7)  # ==> [ 4, 5, 6 ]
            c = Dataset.range(7, 13).batch(2)  # ==> [ [7, 8], [9, 10], [11, 12] ]
            d = Dataset.range(13, 15)  # ==> [ 13, 14 ] 

# The nested structure of the `datasets` argument determines the # structure of elements in the resulting dataset. Dataset.zip((a, b)) # ==> [ (1, 4), (2, 5), (3, 6) ] Dataset.zip((b, a)) # ==> [ (4, 1), (5, 2), (6, 3) ]

# The `datasets` argument may contain an arbitrary number of # datasets. Dataset.zip((a, b, c)) # ==> [ (1, 4, [7, 8]), # (2, 5, [9, 10]), # (3, 6, [11, 12]) ]

# The number of elements in the resulting dataset is the same as # the size of the smallest dataset in `datasets`. Dataset.zip((a, d)) # ==> [ (1, 13), (2, 14) ]

Public properties

object element_spec get;

object element_spec_dyn get;

object PythonObject get;