Type feature_column
Namespace tensorflow.compat.v2.feature_column
Methods
- categorical_column_with_vocabulary_file
- categorical_column_with_vocabulary_file
- categorical_column_with_vocabulary_file
- categorical_column_with_vocabulary_file
- categorical_column_with_vocabulary_file
- categorical_column_with_vocabulary_file
- categorical_column_with_vocabulary_file_dyn
- make_parse_example_spec
- make_parse_example_spec
- make_parse_example_spec_dyn
Properties
Public static methods
VocabularyFileCategoricalColumn categorical_column_with_vocabulary_file(IEnumerable<string> key, IEnumerable<object> vocabulary_file, Nullable<int> vocabulary_size, ImplicitContainer<T> dtype, Nullable<int> default_value, int num_oov_buckets)
VocabularyFileCategoricalColumn categorical_column_with_vocabulary_file(IEnumerable<string> key, int vocabulary_file, Nullable<int> vocabulary_size, ImplicitContainer<T> dtype, Nullable<int> default_value, int num_oov_buckets)
VocabularyFileCategoricalColumn categorical_column_with_vocabulary_file(IEnumerable<string> key, string vocabulary_file, Nullable<int> vocabulary_size, ImplicitContainer<T> dtype, Nullable<int> default_value, int num_oov_buckets)
VocabularyFileCategoricalColumn categorical_column_with_vocabulary_file(string key, IEnumerable<object> vocabulary_file, Nullable<int> vocabulary_size, ImplicitContainer<T> dtype, Nullable<int> default_value, int num_oov_buckets)
VocabularyFileCategoricalColumn categorical_column_with_vocabulary_file(string key, int vocabulary_file, Nullable<int> vocabulary_size, ImplicitContainer<T> dtype, Nullable<int> default_value, int num_oov_buckets)
VocabularyFileCategoricalColumn categorical_column_with_vocabulary_file(string key, string vocabulary_file, Nullable<int> vocabulary_size, ImplicitContainer<T> dtype, Nullable<int> default_value, int num_oov_buckets)
object categorical_column_with_vocabulary_file_dyn(object key, object vocabulary_file, object vocabulary_size, ImplicitContainer<T> dtype, object default_value, ImplicitContainer<T> num_oov_buckets)
A `CategoricalColumn` with a vocabulary file. Use this when your inputs are in string or integer format, and you have a
vocabulary file that maps each value to an integer ID. By default,
out-of-vocabulary values are ignored. Use either (but not both) of
`num_oov_buckets` and `default_value` to specify how to include
out-of-vocabulary values. For input dictionary `features`, `features[key]` is either `Tensor` or
`SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int
and `''` for string, which will be dropped by this feature column. Example with `num_oov_buckets`:
File '/us/states.txt' contains 50 lines, each with a 2-character U.S. state
abbreviation. All inputs with values in that file are assigned an ID 0-49,
corresponding to its line number. All other values are hashed and assigned an
ID 50-54.
Example with `default_value`:
File '/us/states.txt' contains 51 lines - the first line is 'XX', and the
other 50 each have a 2-character U.S. state abbreviation. Both a literal 'XX'
in input, and other values missing from the file, will be assigned ID 0. All
others are assigned the corresponding line number 1-50.
And to make an embedding with either:
Parameters
-
object
key - A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns.
-
object
vocabulary_file - The vocabulary file name.
-
object
vocabulary_size - Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`.
-
ImplicitContainer<T>
dtype - The type of features. Only string and integer types are supported.
-
object
default_value - The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
-
ImplicitContainer<T>
num_oov_buckets - Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
Returns
-
object
- A `CategoricalColumn` with a vocabulary file.
Show Example
states = categorical_column_with_vocabulary_file( key='states', vocabulary_file='/us/states.txt', vocabulary_size=50, num_oov_buckets=5) columns = [states,...] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns)
IDictionary<object, FixedLenFeature> make_parse_example_spec(IEnumerable<HashedCategoricalColumn> feature_columns)
Creates parsing spec dictionary from input feature_columns. The returned dictionary can be used as arg 'features' in
tf.io.parse_example
. Typical usage example:
For the above example, make_parse_example_spec would return the dict:
Parameters
-
IEnumerable<HashedCategoricalColumn>
feature_columns - An iterable containing all feature columns. All items should be instances of classes derived from `_FeatureColumn`.
Returns
-
IDictionary<object, FixedLenFeature>
- A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature` value.
Show Example
# Define features and transformations feature_a = categorical_column_with_vocabulary_file(...) feature_b = numeric_column(...) feature_c_bucketized = bucketized_column(numeric_column("feature_c"),...) feature_a_x_feature_c = crossed_column( columns=["feature_a", feature_c_bucketized],...) feature_columns = set( [feature_b, feature_c_bucketized, feature_a_x_feature_c]) features = tf.io.parse_example( serialized=serialized_examples, features=make_parse_example_spec(feature_columns))
IDictionary<object, FixedLenFeature> make_parse_example_spec(ValueTuple<object, string> feature_columns)
Creates parsing spec dictionary from input feature_columns. The returned dictionary can be used as arg 'features' in
tf.io.parse_example
. Typical usage example:
For the above example, make_parse_example_spec would return the dict:
Parameters
-
ValueTuple<object, string>
feature_columns - An iterable containing all feature columns. All items should be instances of classes derived from `_FeatureColumn`.
Returns
-
IDictionary<object, FixedLenFeature>
- A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature` value.
Show Example
# Define features and transformations feature_a = categorical_column_with_vocabulary_file(...) feature_b = numeric_column(...) feature_c_bucketized = bucketized_column(numeric_column("feature_c"),...) feature_a_x_feature_c = crossed_column( columns=["feature_a", feature_c_bucketized],...) feature_columns = set( [feature_b, feature_c_bucketized, feature_a_x_feature_c]) features = tf.io.parse_example( serialized=serialized_examples, features=make_parse_example_spec(feature_columns))
object make_parse_example_spec_dyn(object feature_columns)
Creates parsing spec dictionary from input feature_columns. The returned dictionary can be used as arg 'features' in
tf.io.parse_example
. Typical usage example:
For the above example, make_parse_example_spec would return the dict:
Parameters
-
object
feature_columns - An iterable containing all feature columns. All items should be instances of classes derived from `_FeatureColumn`.
Returns
-
object
- A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature` value.
Show Example
# Define features and transformations feature_a = categorical_column_with_vocabulary_file(...) feature_b = numeric_column(...) feature_c_bucketized = bucketized_column(numeric_column("feature_c"),...) feature_a_x_feature_c = crossed_column( columns=["feature_a", feature_c_bucketized],...) feature_columns = set( [feature_b, feature_c_bucketized, feature_a_x_feature_c]) features = tf.io.parse_example( serialized=serialized_examples, features=make_parse_example_spec(feature_columns))