Type ConstrainedOptimizer
Namespace tensorflow.contrib.constrained_optimization
Parent PythonObjectContainer
Interfaces IConstrainedOptimizer
Base class representing a constrained optimizer.  A ConstrainedOptimizer wraps a tf.compat.v1.train.Optimizer (or more than
one), and applies it to a ConstrainedMinimizationProblem. Unlike a
tf.compat.v1.train.Optimizer, which takes a tensor to minimize as a parameter
to its minimize() method, a constrained optimizer instead takes a
ConstrainedMinimizationProblem. 
			
		
		
			Methods
- minimize
 - minimize_constrained
 - minimize_constrained_dyn
 - minimize_dyn
 - minimize_unconstrained
 - minimize_unconstrained_dyn
 
Properties
Public instance methods
object minimize(object minimization_problem, object unconstrained_steps, object global_step, object var_list, ImplicitContainer<T> gate_gradients, object aggregation_method, bool colocate_gradients_with_ops, string name, object grad_loss)
Returns an `Operation` for minimizing the constrained problem.  This method combines the functionality of `minimize_unconstrained` and
`minimize_constrained`. If global_step < unconstrained_steps, it will
perform an unconstrained update, and if global_step >= unconstrained_steps,
it will perform a constrained update.  The reason for this functionality is that it may be best to initialize the
constrained optimizer with an approximate optimum of the unconstrained
problem. 
			
				
			
				
		
	Parameters
- 
							
objectminimization_problem - ConstrainedMinimizationProblem, the problem to optimize.
 - 
							
objectunconstrained_steps - int, number of steps for which we should perform unconstrained updates, before transitioning to constrained updates.
 - 
							
objectglobal_step - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectvar_list - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>gate_gradients - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectaggregation_method - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
boolcolocate_gradients_with_ops - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
stringname - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectgrad_loss - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 
Returns
- 
						
object - `Operation`, the train_op.
 
object minimize_constrained(object minimization_problem, object global_step, object var_list, ImplicitContainer<T> gate_gradients, object aggregation_method, bool colocate_gradients_with_ops, string name, object grad_loss)
Returns an `Operation` for minimizing the constrained problem.  Unlike `minimize_unconstrained`, this function attempts to find a solution
that minimizes the `objective` portion of the minimization problem while
satisfying the `constraints` portion. 
			
				
			
				
		
	Parameters
- 
							
objectminimization_problem - ConstrainedMinimizationProblem, the problem to optimize.
 - 
							
objectglobal_step - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectvar_list - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>gate_gradients - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectaggregation_method - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
boolcolocate_gradients_with_ops - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
stringname - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectgrad_loss - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 
Returns
- 
						
object - `Operation`, the train_op.
 
object minimize_constrained_dyn(object minimization_problem, object global_step, object var_list, ImplicitContainer<T> gate_gradients, object aggregation_method, ImplicitContainer<T> colocate_gradients_with_ops, object name, object grad_loss)
Returns an `Operation` for minimizing the constrained problem.  Unlike `minimize_unconstrained`, this function attempts to find a solution
that minimizes the `objective` portion of the minimization problem while
satisfying the `constraints` portion. 
			
				
			
				
		
	Parameters
- 
							
objectminimization_problem - ConstrainedMinimizationProblem, the problem to optimize.
 - 
							
objectglobal_step - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectvar_list - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>gate_gradients - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectaggregation_method - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>colocate_gradients_with_ops - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectname - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectgrad_loss - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 
Returns
- 
						
object - `Operation`, the train_op.
 
object minimize_dyn(object minimization_problem, object unconstrained_steps, object global_step, object var_list, ImplicitContainer<T> gate_gradients, object aggregation_method, ImplicitContainer<T> colocate_gradients_with_ops, object name, object grad_loss)
Returns an `Operation` for minimizing the constrained problem.  This method combines the functionality of `minimize_unconstrained` and
`minimize_constrained`. If global_step < unconstrained_steps, it will
perform an unconstrained update, and if global_step >= unconstrained_steps,
it will perform a constrained update.  The reason for this functionality is that it may be best to initialize the
constrained optimizer with an approximate optimum of the unconstrained
problem. 
			
				
			
				
		
	Parameters
- 
							
objectminimization_problem - ConstrainedMinimizationProblem, the problem to optimize.
 - 
							
objectunconstrained_steps - int, number of steps for which we should perform unconstrained updates, before transitioning to constrained updates.
 - 
							
objectglobal_step - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectvar_list - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>gate_gradients - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectaggregation_method - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>colocate_gradients_with_ops - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectname - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectgrad_loss - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 
Returns
- 
						
object - `Operation`, the train_op.
 
object minimize_unconstrained(object minimization_problem, object global_step, object var_list, ImplicitContainer<T> gate_gradients, object aggregation_method, bool colocate_gradients_with_ops, string name, object grad_loss)
Returns an `Operation` for minimizing the unconstrained problem.  Unlike `minimize_constrained`, this function ignores the `constraints` (and
`proxy_constraints`) portion of the minimization problem entirely, and only
minimizes `objective`. 
			
				
			
				
		
	Parameters
- 
							
objectminimization_problem - ConstrainedMinimizationProblem, the problem to optimize.
 - 
							
objectglobal_step - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectvar_list - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>gate_gradients - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectaggregation_method - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
boolcolocate_gradients_with_ops - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
stringname - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectgrad_loss - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 
Returns
- 
						
object - `Operation`, the train_op.
 
object minimize_unconstrained_dyn(object minimization_problem, object global_step, object var_list, ImplicitContainer<T> gate_gradients, object aggregation_method, ImplicitContainer<T> colocate_gradients_with_ops, object name, object grad_loss)
Returns an `Operation` for minimizing the unconstrained problem.  Unlike `minimize_constrained`, this function ignores the `constraints` (and
`proxy_constraints`) portion of the minimization problem entirely, and only
minimizes `objective`. 
			
				
			
				
		
	Parameters
- 
							
objectminimization_problem - ConstrainedMinimizationProblem, the problem to optimize.
 - 
							
objectglobal_step - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectvar_list - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>gate_gradients - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectaggregation_method - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
ImplicitContainer<T>colocate_gradients_with_ops - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectname - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 - 
							
objectgrad_loss - as in `tf.compat.v1.train.Optimizer`'s `minimize` method.
 
Returns
- 
						
object - `Operation`, the train_op.
 
Public properties
object optimizer get;
Returns the `tf.compat.v1.train.Optimizer` used for optimization. 
		
	object optimizer_dyn get;
Returns the `tf.compat.v1.train.Optimizer` used for optimization.