LostTech.TensorFlow : API Documentation

Type feature_column

Namespace tensorflow.contrib.feature_column

Public static methods

Tensor concatenate_context_input(IGraphNodeBase context_input, IGraphNodeBase sequence_input)

object concatenate_context_input_dyn(object context_input, object sequence_input)

_SequenceCategoricalColumn sequence_categorical_column_with_hash_bucket(string key, IEnumerable<object> hash_bucket_size, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids are set by hashing.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
IEnumerable<object> hash_bucket_size
An int > 1. The number of buckets.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
tokens = sequence_categorical_column_with_hash_bucket(
                'tokens', hash_bucket_size=1000)
            tokens_embedding = embedding_column(tokens, dimension=10)
            columns = [tokens_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_hash_bucket(string key, string hash_bucket_size, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids are set by hashing.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
string hash_bucket_size
An int > 1. The number of buckets.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
tokens = sequence_categorical_column_with_hash_bucket(
                'tokens', hash_bucket_size=1000)
            tokens_embedding = embedding_column(tokens, dimension=10)
            columns = [tokens_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_hash_bucket(string key, int hash_bucket_size, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids are set by hashing.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
int hash_bucket_size
An int > 1. The number of buckets.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
tokens = sequence_categorical_column_with_hash_bucket(
                'tokens', hash_bucket_size=1000)
            tokens_embedding = embedding_column(tokens, dimension=10)
            columns = [tokens_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

object sequence_categorical_column_with_hash_bucket_dyn(object key, object hash_bucket_size, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids are set by hashing.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
object key
A unique string identifying the input feature.
object hash_bucket_size
An int > 1. The number of buckets.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
object
A `SequenceCategoricalColumn`.
Show Example
tokens = sequence_categorical_column_with_hash_bucket(
                'tokens', hash_bucket_size=1000)
            tokens_embedding = embedding_column(tokens, dimension=10)
            columns = [tokens_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_identity(string key, string num_buckets, object default_value)

Returns a feature column that represents sequences of integers.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
string num_buckets
Range of inputs. Namely, inputs are expected to be in the range `[0, num_buckets)`.
object default_value
If `None`, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range `[0, num_buckets)`, and will replace out-of-range inputs.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
watches = sequence_categorical_column_with_identity(
                'watches', num_buckets=1000)
            watches_embedding = embedding_column(watches, dimension=10)
            columns = [watches_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_identity(string key, IEnumerable<object> num_buckets, object default_value)

Returns a feature column that represents sequences of integers.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
IEnumerable<object> num_buckets
Range of inputs. Namely, inputs are expected to be in the range `[0, num_buckets)`.
object default_value
If `None`, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range `[0, num_buckets)`, and will replace out-of-range inputs.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
watches = sequence_categorical_column_with_identity(
                'watches', num_buckets=1000)
            watches_embedding = embedding_column(watches, dimension=10)
            columns = [watches_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_identity(string key, int num_buckets, object default_value)

Returns a feature column that represents sequences of integers.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
int num_buckets
Range of inputs. Namely, inputs are expected to be in the range `[0, num_buckets)`.
object default_value
If `None`, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range `[0, num_buckets)`, and will replace out-of-range inputs.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
watches = sequence_categorical_column_with_identity(
                'watches', num_buckets=1000)
            watches_embedding = embedding_column(watches, dimension=10)
            columns = [watches_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

object sequence_categorical_column_with_identity_dyn(object key, object num_buckets, object default_value)

Returns a feature column that represents sequences of integers.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
object key
A unique string identifying the input feature.
object num_buckets
Range of inputs. Namely, inputs are expected to be in the range `[0, num_buckets)`.
object default_value
If `None`, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range `[0, num_buckets)`, and will replace out-of-range inputs.
Returns
object
A `SequenceCategoricalColumn`.
Show Example
watches = sequence_categorical_column_with_identity(
                'watches', num_buckets=1000)
            watches_embedding = embedding_column(watches, dimension=10)
            columns = [watches_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_vocabulary_file(string key, IEnumerable<object> vocabulary_file, Nullable<int> vocabulary_size, int num_oov_buckets, object default_value, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids use a vocabulary file.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
IEnumerable<object> vocabulary_file
The vocabulary file name.
Nullable<int> vocabulary_size
Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`.
int num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
object default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
states = sequence_categorical_column_with_vocabulary_file(
                key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
                num_oov_buckets=5)
            states_embedding = embedding_column(states, dimension=10)
            columns = [states_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_vocabulary_file(string key, int vocabulary_file, Nullable<int> vocabulary_size, int num_oov_buckets, object default_value, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids use a vocabulary file.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
int vocabulary_file
The vocabulary file name.
Nullable<int> vocabulary_size
Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`.
int num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
object default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
states = sequence_categorical_column_with_vocabulary_file(
                key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
                num_oov_buckets=5)
            states_embedding = embedding_column(states, dimension=10)
            columns = [states_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_vocabulary_file(string key, string vocabulary_file, Nullable<int> vocabulary_size, int num_oov_buckets, object default_value, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids use a vocabulary file.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
string vocabulary_file
The vocabulary file name.
Nullable<int> vocabulary_size
Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`.
int num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
object default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
states = sequence_categorical_column_with_vocabulary_file(
                key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
                num_oov_buckets=5)
            states_embedding = embedding_column(states, dimension=10)
            columns = [states_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

object sequence_categorical_column_with_vocabulary_file_dyn(object key, object vocabulary_file, object vocabulary_size, ImplicitContainer<T> num_oov_buckets, object default_value, ImplicitContainer<T> dtype)

A sequence of categorical terms where ids use a vocabulary file.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
object key
A unique string identifying the input feature.
object vocabulary_file
The vocabulary file name.
object vocabulary_size
Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`.
ImplicitContainer<T> num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
object default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
ImplicitContainer<T> dtype
The type of features. Only string and integer types are supported.
Returns
object
A `SequenceCategoricalColumn`.
Show Example
states = sequence_categorical_column_with_vocabulary_file(
                key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
                num_oov_buckets=5)
            states_embedding = embedding_column(states, dimension=10)
            columns = [states_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_vocabulary_list(string key, IEnumerable<object> vocabulary_list, DType dtype, int default_value, int num_oov_buckets)

A sequence of categorical terms where ids use an in-memory list.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
IEnumerable<object> vocabulary_list
An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in `vocabulary_list`. Must be castable to `dtype`.
DType dtype
The type of features. Only string and integer types are supported. If `None`, it will be inferred from `vocabulary_list`.
int default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
int num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
colors = sequence_categorical_column_with_vocabulary_list(
                key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
                num_oov_buckets=2)
            colors_embedding = embedding_column(colors, dimension=3)
            columns = [colors_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_vocabulary_list(string key, string vocabulary_list, DType dtype, int default_value, int num_oov_buckets)

A sequence of categorical terms where ids use an in-memory list.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
string vocabulary_list
An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in `vocabulary_list`. Must be castable to `dtype`.
DType dtype
The type of features. Only string and integer types are supported. If `None`, it will be inferred from `vocabulary_list`.
int default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
int num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
colors = sequence_categorical_column_with_vocabulary_list(
                key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
                num_oov_buckets=2)
            colors_embedding = embedding_column(colors, dimension=3)
            columns = [colors_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceCategoricalColumn sequence_categorical_column_with_vocabulary_list(string key, int vocabulary_list, DType dtype, int default_value, int num_oov_buckets)

A sequence of categorical terms where ids use an in-memory list.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
string key
A unique string identifying the input feature.
int vocabulary_list
An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in `vocabulary_list`. Must be castable to `dtype`.
DType dtype
The type of features. Only string and integer types are supported. If `None`, it will be inferred from `vocabulary_list`.
int default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
int num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
Returns
_SequenceCategoricalColumn
A `SequenceCategoricalColumn`.
Show Example
colors = sequence_categorical_column_with_vocabulary_list(
                key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
                num_oov_buckets=2)
            colors_embedding = embedding_column(colors, dimension=3)
            columns = [colors_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

object sequence_categorical_column_with_vocabulary_list_dyn(object key, object vocabulary_list, object dtype, ImplicitContainer<T> default_value, ImplicitContainer<T> num_oov_buckets)

A sequence of categorical terms where ids use an in-memory list.

Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.

Example:
Parameters
object key
A unique string identifying the input feature.
object vocabulary_list
An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in `vocabulary_list`. Must be castable to `dtype`.
object dtype
The type of features. Only string and integer types are supported. If `None`, it will be inferred from `vocabulary_list`.
ImplicitContainer<T> default_value
The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`.
ImplicitContainer<T> num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`.
Returns
object
A `SequenceCategoricalColumn`.
Show Example
colors = sequence_categorical_column_with_vocabulary_list(
                key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
                num_oov_buckets=2)
            colors_embedding = embedding_column(colors, dimension=3)
            columns = [colors_embedding] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

ValueTuple<Tensor, object> sequence_input_layer(IDictionary<string, object> features, IEnumerable<_EmbeddingColumn> feature_columns, object weight_collections, bool trainable)

object sequence_input_layer_dyn(object features, object feature_columns, object weight_collections, ImplicitContainer<T> trainable)

_SequenceNumericColumn sequence_numeric_column(string key, ImplicitContainer<T> shape, double default_value, ImplicitContainer<T> dtype, PythonFunctionContainer normalizer_fn)

Returns a feature column that represents sequences of numeric data.

Example:
Parameters
string key
A unique string identifying the input features.
ImplicitContainer<T> shape
The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values.
double default_value
A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`.
ImplicitContainer<T> dtype
The type of values.
PythonFunctionContainer normalizer_fn
If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations.
Returns
_SequenceNumericColumn
A `SequenceNumericColumn`.
Show Example
temperature = sequence_numeric_column('temperature')
            columns = [temperature] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

_SequenceNumericColumn sequence_numeric_column(string key, ImplicitContainer<T> shape, double default_value, ImplicitContainer<T> dtype, string normalizer_fn)

Returns a feature column that represents sequences of numeric data.

Example:
Parameters
string key
A unique string identifying the input features.
ImplicitContainer<T> shape
The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values.
double default_value
A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`.
ImplicitContainer<T> dtype
The type of values.
string normalizer_fn
If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations.
Returns
_SequenceNumericColumn
A `SequenceNumericColumn`.
Show Example
temperature = sequence_numeric_column('temperature')
            columns = [temperature] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

object sequence_numeric_column_dyn(object key, ImplicitContainer<T> shape, ImplicitContainer<T> default_value, ImplicitContainer<T> dtype, object normalizer_fn)

Returns a feature column that represents sequences of numeric data.

Example:
Parameters
object key
A unique string identifying the input features.
ImplicitContainer<T> shape
The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values.
ImplicitContainer<T> default_value
A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`.
ImplicitContainer<T> dtype
The type of values.
object normalizer_fn
If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations.
Returns
object
A `SequenceNumericColumn`.
Show Example
temperature = sequence_numeric_column('temperature')
            columns = [temperature] 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)

Public properties

PythonFunctionContainer _SequenceNumericColumn_fn get;

PythonFunctionContainer concatenate_context_input_fn get;

PythonFunctionContainer sequence_categorical_column_with_hash_bucket_fn get;

PythonFunctionContainer sequence_categorical_column_with_identity_fn get;

PythonFunctionContainer sequence_categorical_column_with_vocabulary_file_fn get;

PythonFunctionContainer sequence_categorical_column_with_vocabulary_list_fn get;

PythonFunctionContainer sequence_input_layer_fn get;

PythonFunctionContainer sequence_numeric_column_fn get;