Type framework
Namespace tensorflow.contrib.framework
Methods
- assert_scalar_int
- assert_scalar_int
- assert_scalar_int_dyn
- experimental
- experimental_dyn
- fuse_op
- fuse_op
- fuse_op
- fuse_op
- fuse_op_dyn
- get_graph_from_inputs
- get_graph_from_inputs_dyn
- get_placeholders
- get_placeholders_dyn
- init_from_checkpoint
- init_from_checkpoint_dyn
- list_variables
- list_variables_dyn
- load_checkpoint
- load_checkpoint
- load_checkpoint_dyn
- load_linear_multiclass_bias_initializer
- load_linear_multiclass_bias_initializer_dyn
- load_variable
- load_variable
- load_variable_dyn
- load_variable_slot_initializer
- load_variable_slot_initializer_dyn
- print_op
- print_op
- print_op_dyn
- py_func
- py_func
- py_func
- py_func
- py_func_dyn
- reduce_sum_n
- reduce_sum_n_dyn
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions
- remove_squeezable_dimensions_dyn
- with_same_shape
- with_same_shape_dyn
- with_shape
- with_shape
- with_shape
- with_shape
- with_shape
- with_shape_dyn
Properties
- assert_scalar_int_fn
- experimental_fn
- fuse_op_fn
- get_graph_from_inputs_fn
- get_name_scope_fn
- get_placeholders_fn
- init_from_checkpoint_fn
- list_variables_fn
- load_checkpoint_fn
- load_linear_multiclass_bias_initializer_fn
- load_variable_fn
- load_variable_slot_initializer_fn
- print_op_fn
- py_func_fn
- reduce_sum_n_fn
- remove_squeezable_dimensions_fn
- with_same_shape_fn
- with_shape_fn
Public static methods
Tensor assert_scalar_int(IGraphNodeBase tensor, string name)
Tensor assert_scalar_int(int tensor, string name)
object assert_scalar_int_dyn(object tensor, object name)
object experimental(object func)
object experimental_dyn(object func)
object fuse_op(object graph_def, object input_nodes, object output_nodes, IEnumerable<int> output_dtypes, bool output_quantized, string op_name, string op_type)
object fuse_op(object graph_def, IEnumerable<string> input_nodes, IEnumerable<string> output_nodes, IEnumerable<int> output_dtypes, bool output_quantized, string op_name, string op_type)
object fuse_op(object graph_def, IEnumerable<string> input_nodes, object output_nodes, IEnumerable<int> output_dtypes, bool output_quantized, string op_name, string op_type)
object fuse_op(object graph_def, object input_nodes, IEnumerable<string> output_nodes, IEnumerable<int> output_dtypes, bool output_quantized, string op_name, string op_type)
object fuse_op_dyn(object graph_def, object input_nodes, object output_nodes, object output_dtypes, object output_quantized, object op_name, object op_type)
object get_graph_from_inputs_dyn(object op_input_list, object graph)
IList<object> get_placeholders(object graph)
object get_placeholders_dyn(object graph)
void init_from_checkpoint(string checkpoint_dir, IDictionary<string, string> assignment_map)
Replaces /part_'`.  Example: 
			
				
  
	tf.Variable initializers so they load from a checkpoint file.  Values are not loaded immediately, but when the initializer is run
(typically by running a `tf.compat.v1.global_variables_initializer` op).  Note: This overrides default initialization ops of specified variables and
redefines dtype.  Assignment map supports following syntax:  * `'checkpoint_scope_name/': 'scope_name/'` - will load all variables in
current `scope_name` from `checkpoint_scope_name` with matching tensor
names.
* `'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name'` -
will initialize `scope_name/variable_name` variable
from `checkpoint_scope_name/some_other_variable`.
* `'scope_variable_name': variable` - will initialize given tf.Variable
object with tensor 'scope_variable_name' from the checkpoint.
* `'scope_variable_name': list(variable)` - will initialize list of
partitioned variables with tensor 'scope_variable_name' from the checkpoint.
* `'/': 'scope_name/'` - will load all variables in current `scope_name` from
checkpoint's root (e.g. no scope).  Supports loading into partitioned variables, which are represented as
`'Parameters
- 
							stringcheckpoint_dir
- 
							IDictionary<string, string>assignment_map
- Dict, where keys are names of the variables in the checkpoint and values are current variables or names of current variables (in default graph).
  Show Example
  
		# Say, '/tmp/model.ckpt' has the following tensors:
            #  -- name='old_scope_1/var1', shape=[20, 2]
            #  -- name='old_scope_1/var2', shape=[50, 4]
            #  -- name='old_scope_2/var3', shape=[100, 100]  # Create new model's variables
with tf.compat.v1.variable_scope('new_scope_1'):
  var1 = tf.compat.v1.get_variable('var1', shape=[20, 2],
                         initializer=tf.compat.v1.zeros_initializer())
with tf.compat.v1.variable_scope('new_scope_2'):
  var2 = tf.compat.v1.get_variable('var2', shape=[50, 4],
                         initializer=tf.compat.v1.zeros_initializer())
  # Partition into 5 variables along the first axis.
  var3 = tf.compat.v1.get_variable(name='var3', shape=[100, 100],
                         initializer=tf.compat.v1.zeros_initializer(),
                         partitioner=lambda shape, dtype: [5, 1])  # Initialize all variables in `new_scope_1` from `old_scope_1`.
init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/': 'new_scope_1'})  # Use names to specify which variables to initialize from checkpoint.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': 'new_scope_1/var1',
                      'old_scope_1/var2': 'new_scope_2/var2'})  # Or use tf.Variable objects to identify what to initialize.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': var1,
                      'old_scope_1/var2': var2})  # Initialize partitioned variables using variable's name
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': 'new_scope_2/var3'})  # Or specify the list of tf.Variable objects.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': var3._get_variable_list()}) 
object init_from_checkpoint_dyn(object checkpoint_dir, object assignment_map)
Replaces /part_'`.  Example: 
			
				
  
	tf.Variable initializers so they load from a checkpoint file.  Values are not loaded immediately, but when the initializer is run
(typically by running a `tf.compat.v1.global_variables_initializer` op).  Note: This overrides default initialization ops of specified variables and
redefines dtype.  Assignment map supports following syntax:  * `'checkpoint_scope_name/': 'scope_name/'` - will load all variables in
current `scope_name` from `checkpoint_scope_name` with matching tensor
names.
* `'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name'` -
will initialize `scope_name/variable_name` variable
from `checkpoint_scope_name/some_other_variable`.
* `'scope_variable_name': variable` - will initialize given tf.Variable
object with tensor 'scope_variable_name' from the checkpoint.
* `'scope_variable_name': list(variable)` - will initialize list of
partitioned variables with tensor 'scope_variable_name' from the checkpoint.
* `'/': 'scope_name/'` - will load all variables in current `scope_name` from
checkpoint's root (e.g. no scope).  Supports loading into partitioned variables, which are represented as
`'Parameters
- 
							objectcheckpoint_dir
- 
							objectassignment_map
- Dict, where keys are names of the variables in the checkpoint and values are current variables or names of current variables (in default graph).
  Show Example
  
		# Say, '/tmp/model.ckpt' has the following tensors:
            #  -- name='old_scope_1/var1', shape=[20, 2]
            #  -- name='old_scope_1/var2', shape=[50, 4]
            #  -- name='old_scope_2/var3', shape=[100, 100]  # Create new model's variables
with tf.compat.v1.variable_scope('new_scope_1'):
  var1 = tf.compat.v1.get_variable('var1', shape=[20, 2],
                         initializer=tf.compat.v1.zeros_initializer())
with tf.compat.v1.variable_scope('new_scope_2'):
  var2 = tf.compat.v1.get_variable('var2', shape=[50, 4],
                         initializer=tf.compat.v1.zeros_initializer())
  # Partition into 5 variables along the first axis.
  var3 = tf.compat.v1.get_variable(name='var3', shape=[100, 100],
                         initializer=tf.compat.v1.zeros_initializer(),
                         partitioner=lambda shape, dtype: [5, 1])  # Initialize all variables in `new_scope_1` from `old_scope_1`.
init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/': 'new_scope_1'})  # Use names to specify which variables to initialize from checkpoint.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': 'new_scope_1/var1',
                      'old_scope_1/var2': 'new_scope_2/var2'})  # Or use tf.Variable objects to identify what to initialize.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_1/var1': var1,
                      'old_scope_1/var2': var2})  # Initialize partitioned variables using variable's name
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': 'new_scope_2/var3'})  # Or specify the list of tf.Variable objects.
init_from_checkpoint('/tmp/model.ckpt',
                     {'old_scope_2/var3': var3._get_variable_list()}) 
IList<ValueTuple<object, object>> list_variables(string checkpoint_dir)
Returns list of all variables in the checkpoint. 
			
				
		
	Returns
- 
						IList<ValueTuple<object, object>>
- List of tuples `(name, shape)`.
object list_variables_dyn(object checkpoint_dir)
Returns list of all variables in the checkpoint. 
			
				
		
	Returns
- 
						object
- List of tuples `(name, shape)`.
CheckpointReader load_checkpoint(Byte[] filepattern)
Returns `CheckpointReader` for checkpoint found in `ckpt_dir_or_file`.  If `ckpt_dir_or_file` resolves to a directory with multiple checkpoints,
reader for the latest checkpoint is returned. 
			
				
		
	Returns
- 
						CheckpointReader
- `CheckpointReader` object.
CheckpointReader load_checkpoint(string filepattern)
Returns `CheckpointReader` for checkpoint found in `ckpt_dir_or_file`.  If `ckpt_dir_or_file` resolves to a directory with multiple checkpoints,
reader for the latest checkpoint is returned. 
			
				
		
	Returns
- 
						CheckpointReader
- `CheckpointReader` object.
object load_checkpoint_dyn(object filepattern)
Returns `CheckpointReader` for checkpoint found in `ckpt_dir_or_file`.  If `ckpt_dir_or_file` resolves to a directory with multiple checkpoints,
reader for the latest checkpoint is returned. 
			
				
		
	Returns
- 
						object
- `CheckpointReader` object.
object load_linear_multiclass_bias_initializer(object ckpt_path, object bias_tensor_name, object new_class_vocab_size, object old_class_vocab_file, object new_class_vocab_file, int num_class_oov_buckets, object initializer, int max_rows_in_memory)
object load_linear_multiclass_bias_initializer_dyn(object ckpt_path, object bias_tensor_name, object new_class_vocab_size, object old_class_vocab_file, object new_class_vocab_file, ImplicitContainer<T> num_class_oov_buckets, object initializer, ImplicitContainer<T> max_rows_in_memory)
object load_variable(Byte[] checkpoint_dir, string name)
Returns the tensor value of the given variable in the checkpoint. 
			
				
			
				
		
	Parameters
- 
							Byte[]checkpoint_dir
- 
							stringname
- Name of the variable to return.
Returns
- 
						object
- A numpy `ndarray` with a copy of the value of this variable.
object load_variable(string checkpoint_dir, string name)
Returns the tensor value of the given variable in the checkpoint. 
			
				
			
				
		
	Parameters
- 
							stringcheckpoint_dir
- 
							stringname
- Name of the variable to return.
Returns
- 
						object
- A numpy `ndarray` with a copy of the value of this variable.
object load_variable_dyn(object checkpoint_dir, object name)
Returns the tensor value of the given variable in the checkpoint. 
			
				
			
				
		
	Parameters
- 
							objectcheckpoint_dir
- 
							objectname
- Name of the variable to return.
Returns
- 
						object
- A numpy `ndarray` with a copy of the value of this variable.