Public static methods
IList<object> apply_dropout(IEnumerable<object> cells, IEnumerable<double> dropout_keep_probabilities, object random_seed)
object apply_dropout_dyn(object cells, object dropout_keep_probabilities, object random_seed)
object construct_rnn_cell(IEnumerable<int> num_units, string cell_type, IEnumerable<double> dropout_keep_probabilities)
object construct_rnn_cell(int num_units, string cell_type, IEnumerable<double> dropout_keep_probabilities)
object construct_rnn_cell_dyn(object num_units, ImplicitContainer<T> cell_type, object dropout_keep_probabilities)
IDictionary<string, object> get_eval_metric_ops(int problem_type, int prediction_type, IGraphNodeBase sequence_length, IDictionary<object, object> prediction_dict, IGraphNodeBase labels)
object get_eval_metric_ops_dyn(object problem_type, object prediction_type, object sequence_length, object prediction_dict, object labels)
ValueTuple<Tensor, object> mask_activations_and_labels(IEnumerable<IGraphNodeBase> activations, IGraphNodeBase labels, IGraphNodeBase sequence_lengths)
object mask_activations_and_labels_dyn(object activations, object labels, object sequence_lengths)
IDictionary<string, Tensor> multi_value_predictions(IEnumerable<IGraphNodeBase> activations, _TargetColumn target_column, int problem_type, bool predict_probabilities)
IDictionary<string, Tensor> multi_value_predictions(IGraphNodeBase activations, _TargetColumn target_column, int problem_type, bool predict_probabilities)
object multi_value_predictions_dyn(object activations, object target_column, object problem_type, object predict_probabilities)
Tensor select_last_activations(IGraphNodeBase activations, ValueTuple<PythonClassContainer, PythonClassContainer> sequence_lengths)
object select_last_activations_dyn(object activations, object sequence_lengths)
Public properties