Type SDCAOptimizer
Namespace tensorflow.contrib.linear_optimizer
Parent PythonObjectContainer
Interfaces ISDCAOptimizer
Wrapper class for SDCA optimizer. The wrapper is currently meant for use as an optimizer within a tf.learn
Estimator. Example usage:
Here the expectation is that the `input_fn_*` functions passed to train and
evaluate return a pair (dict, label_tensor) where dict has `example_id_column`
as `key` whose value is a `Tensor` of shape [batch_size] and dtype string.
num_loss_partitions defines the number of partitions of the global loss
function and should be set to `(#concurrent train ops/per worker)
x (#workers)`.
Convergence of (global) loss is guaranteed if `num_loss_partitions` is larger
or equal to the above product. Larger values for `num_loss_partitions` lead to
slower convergence. The recommended value for `num_loss_partitions` in
`tf.learn` (where currently there is one process per worker) is the number
of workers running the train steps. It defaults to 1 (single machine).
`num_table_shards` defines the number of shards for the internal state
table, typically set to match the number of parameter servers for large
data sets. You can also specify a `partitioner` object to partition the primal
weights during training (`div` partitioning strategy will be used).
Show Example
real_feature_column = real_valued_column(...) sparse_feature_column = sparse_column_with_hash_bucket(...) sdca_optimizer = linear.SDCAOptimizer(example_id_column='example_id', num_loss_partitions=1, num_table_shards=1, symmetric_l2_regularization=2.0) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[real_feature_column, sparse_feature_column], weight_column_name=..., optimizer=sdca_optimizer) classifier.fit(input_fn_train, steps=50) classifier.evaluate(input_fn=input_fn_eval)
Methods
Properties
- adaptive
- adaptive_dyn
- example_id_column
- example_id_column_dyn
- num_loss_partitions
- num_loss_partitions_dyn
- num_table_shards
- num_table_shards_dyn
- partitioner
- partitioner_dyn
- PythonObject
- symmetric_l1_regularization
- symmetric_l1_regularization_dyn
- symmetric_l2_regularization
- symmetric_l2_regularization_dyn
Public instance methods
ValueTuple<SdcaModel, object> get_train_step(IDictionary<object, object> columns_to_variables, object weight_column_name, string loss_type, object features, object targets, IGraphNodeBase global_step)
Returns the training operation of an SdcaModel optimizer.
object get_train_step_dyn(object columns_to_variables, object weight_column_name, object loss_type, object features, object targets, object global_step)
Returns the training operation of an SdcaModel optimizer.
Public static methods
SDCAOptimizer NewDyn(object example_id_column, ImplicitContainer<T> num_loss_partitions, object num_table_shards, ImplicitContainer<T> symmetric_l1_regularization, ImplicitContainer<T> symmetric_l2_regularization, ImplicitContainer<T> adaptive, object partitioner)
Initialize self. See help(type(self)) for accurate signature.