Type metric_learning
Namespace tensorflow.contrib.losses.metric_learning
Methods
- cluster_loss
- cluster_loss_dyn
- compute_augmented_facility_locations
- compute_augmented_facility_locations
- compute_augmented_facility_locations
- compute_augmented_facility_locations_dyn
- compute_augmented_facility_locations_pam
- compute_augmented_facility_locations_pam
- compute_augmented_facility_locations_pam
- compute_augmented_facility_locations_pam_dyn
- compute_clustering_score
- compute_clustering_score_dyn
- compute_facility_energy
- compute_facility_energy
- compute_facility_energy
- compute_facility_energy_dyn
- compute_gt_cluster_score
- compute_gt_cluster_score
- compute_gt_cluster_score
- compute_gt_cluster_score_dyn
- contrastive_loss
- contrastive_loss_dyn
- get_cluster_assignment
- get_cluster_assignment
- get_cluster_assignment
- get_cluster_assignment_dyn
- lifted_struct_loss
- lifted_struct_loss_dyn
- masked_maximum
- masked_maximum
- masked_maximum
- masked_maximum
- masked_maximum
- masked_maximum
- masked_maximum
- masked_maximum
- masked_maximum
- masked_maximum_dyn
- masked_minimum
- masked_minimum
- masked_minimum
- masked_minimum_dyn
- npairs_loss
- npairs_loss_dyn
- npairs_loss_multilabel
- npairs_loss_multilabel_dyn
- pairwise_distance
- pairwise_distance_dyn
- triplet_semihard_loss
- triplet_semihard_loss_dyn
- update_1d_tensor
- update_1d_tensor
- update_1d_tensor
- update_1d_tensor_dyn
- update_all_medoids
- update_all_medoids_dyn
- update_medoid_per_cluster
- update_medoid_per_cluster
- update_medoid_per_cluster_dyn
Properties
- cluster_loss_fn
- compute_augmented_facility_locations_fn
- compute_augmented_facility_locations_pam_fn
- compute_clustering_score_fn
- compute_facility_energy_fn
- compute_gt_cluster_score_fn
- contrastive_loss_fn
- get_cluster_assignment_fn
- lifted_struct_loss_fn
- masked_maximum_fn
- masked_minimum_fn
- npairs_loss_fn
- npairs_loss_multilabel_fn
- pairwise_distance_fn
- triplet_semihard_loss_fn
- update_1d_tensor_fn
- update_all_medoids_fn
- update_medoid_per_cluster_fn
Fields
Public static methods
object cluster_loss(IGraphNodeBase labels, IGraphNodeBase embeddings, double margin_multiplier, bool enable_pam_finetuning, string margin_type, bool print_losses)
object cluster_loss_dyn(object labels, object embeddings, object margin_multiplier, ImplicitContainer<T> enable_pam_finetuning, ImplicitContainer<T> margin_type, ImplicitContainer<T> print_losses)
Tensor compute_augmented_facility_locations(string pairwise_distances, IGraphNodeBase labels, IGraphNodeBase all_ids, double margin_multiplier, string margin_type)
Tensor compute_augmented_facility_locations(object pairwise_distances, IGraphNodeBase labels, IGraphNodeBase all_ids, double margin_multiplier, string margin_type)
Tensor compute_augmented_facility_locations(IGraphNodeBase pairwise_distances, IGraphNodeBase labels, IGraphNodeBase all_ids, double margin_multiplier, string margin_type)
object compute_augmented_facility_locations_dyn(object pairwise_distances, object labels, object all_ids, object margin_multiplier, object margin_type)
object compute_augmented_facility_locations_pam(string pairwise_distances, IGraphNodeBase labels, double margin_multiplier, string margin_type, object chosen_ids, int pam_max_iter)
object compute_augmented_facility_locations_pam(object pairwise_distances, IGraphNodeBase labels, double margin_multiplier, string margin_type, object chosen_ids, int pam_max_iter)
object compute_augmented_facility_locations_pam(IGraphNodeBase pairwise_distances, IGraphNodeBase labels, double margin_multiplier, string margin_type, object chosen_ids, int pam_max_iter)
object compute_augmented_facility_locations_pam_dyn(object pairwise_distances, object labels, object margin_multiplier, object margin_type, object chosen_ids, ImplicitContainer<T> pam_max_iter)
Tensor compute_clustering_score(IGraphNodeBase labels, IGraphNodeBase predictions, string margin_type)
object compute_clustering_score_dyn(object labels, object predictions, object margin_type)
object compute_facility_energy(IGraphNodeBase pairwise_distances, object centroid_ids)
object compute_facility_energy(object pairwise_distances, object centroid_ids)
object compute_facility_energy(string pairwise_distances, object centroid_ids)
object compute_facility_energy_dyn(object pairwise_distances, object centroid_ids)
Tensor compute_gt_cluster_score(IGraphNodeBase pairwise_distances, IGraphNodeBase labels)
Tensor compute_gt_cluster_score(object pairwise_distances, IGraphNodeBase labels)
Tensor compute_gt_cluster_score(string pairwise_distances, IGraphNodeBase labels)
object compute_gt_cluster_score_dyn(object pairwise_distances, object labels)
Tensor contrastive_loss(IGraphNodeBase labels, IGraphNodeBase embeddings_anchor, IGraphNodeBase embeddings_positive, double margin)
object contrastive_loss_dyn(object labels, object embeddings_anchor, object embeddings_positive, ImplicitContainer<T> margin)
Tensor get_cluster_assignment(string pairwise_distances, IGraphNodeBase centroid_ids)
Tensor get_cluster_assignment(object pairwise_distances, IGraphNodeBase centroid_ids)
Tensor get_cluster_assignment(IGraphNodeBase pairwise_distances, IGraphNodeBase centroid_ids)
object get_cluster_assignment_dyn(object pairwise_distances, object centroid_ids)
Tensor lifted_struct_loss(IGraphNodeBase labels, IGraphNodeBase embeddings, double margin)
object lifted_struct_loss_dyn(object labels, object embeddings, ImplicitContainer<T> margin)
object masked_maximum(IGraphNodeBase data, ValueTuple<PythonClassContainer, PythonClassContainer> mask, int dim)
object masked_maximum(object data, IGraphNodeBase mask, int dim)
object masked_maximum(IGraphNodeBase data, IGraphNodeBase mask, int dim)
object masked_maximum(object data, IndexedSlices mask, int dim)
object masked_maximum(object data, ValueTuple<PythonClassContainer, PythonClassContainer> mask, int dim)
object masked_maximum(string data, IGraphNodeBase mask, int dim)
object masked_maximum(string data, IndexedSlices mask, int dim)
object masked_maximum(string data, ValueTuple<PythonClassContainer, PythonClassContainer> mask, int dim)
object masked_maximum(IGraphNodeBase data, IndexedSlices mask, int dim)
object masked_maximum_dyn(object data, object mask, ImplicitContainer<T> dim)
object masked_minimum(IGraphNodeBase data, IGraphNodeBase mask, int dim)
object masked_minimum(IGraphNodeBase data, IndexedSlices mask, int dim)
object masked_minimum(IGraphNodeBase data, ValueTuple<PythonClassContainer, PythonClassContainer> mask, int dim)
object masked_minimum_dyn(object data, object mask, ImplicitContainer<T> dim)
object npairs_loss(IGraphNodeBase labels, IGraphNodeBase embeddings_anchor, IGraphNodeBase embeddings_positive, double reg_lambda, bool print_losses)
object npairs_loss_dyn(object labels, object embeddings_anchor, object embeddings_positive, ImplicitContainer<T> reg_lambda, ImplicitContainer<T> print_losses)
object npairs_loss_multilabel(IEnumerable<SparseTensor> sparse_labels, IGraphNodeBase embeddings_anchor, IGraphNodeBase embeddings_positive, double reg_lambda, bool print_losses)
object npairs_loss_multilabel_dyn(object sparse_labels, object embeddings_anchor, object embeddings_positive, ImplicitContainer<T> reg_lambda, ImplicitContainer<T> print_losses)
object pairwise_distance(IGraphNodeBase feature, bool squared)
object pairwise_distance_dyn(object feature, ImplicitContainer<T> squared)
Tensor triplet_semihard_loss(IGraphNodeBase labels, IGraphNodeBase embeddings, double margin)
object triplet_semihard_loss_dyn(object labels, object embeddings, ImplicitContainer<T> margin)
Tensor update_1d_tensor(IGraphNodeBase y, object index, IGraphNodeBase value)
Tensor update_1d_tensor(IGraphNodeBase y, object index, IndexedSlices value)
Tensor update_1d_tensor(IGraphNodeBase y, object index, ValueTuple<PythonClassContainer, PythonClassContainer> value)
object update_1d_tensor_dyn(object y, object index, object value)
object update_all_medoids(object pairwise_distances, IGraphNodeBase predictions, IGraphNodeBase labels, object chosen_ids, object margin_multiplier, string margin_type)
object update_all_medoids_dyn(object pairwise_distances, object predictions, object labels, object chosen_ids, object margin_multiplier, object margin_type)
Tensor update_medoid_per_cluster(object pairwise_distances, IGraphNodeBase pairwise_distances_subset, IGraphNodeBase labels, IGraphNodeBase chosen_ids, IGraphNodeBase cluster_member_ids, IGraphNodeBase cluster_idx, object margin_multiplier, string margin_type)
Tensor update_medoid_per_cluster(object pairwise_distances, IGraphNodeBase pairwise_distances_subset, IGraphNodeBase labels, IGraphNodeBase chosen_ids, IGraphNodeBase cluster_member_ids, int cluster_idx, object margin_multiplier, string margin_type)
object update_medoid_per_cluster_dyn(object pairwise_distances, object pairwise_distances_subset, object labels, object chosen_ids, object cluster_member_ids, object cluster_idx, object margin_multiplier, object margin_type)
Public properties
PythonFunctionContainer cluster_loss_fn get;
PythonFunctionContainer compute_augmented_facility_locations_fn get;
PythonFunctionContainer compute_augmented_facility_locations_pam_fn get;
PythonFunctionContainer compute_clustering_score_fn get;
PythonFunctionContainer compute_facility_energy_fn get;
PythonFunctionContainer compute_gt_cluster_score_fn get;
PythonFunctionContainer contrastive_loss_fn get;
PythonFunctionContainer get_cluster_assignment_fn get;
PythonFunctionContainer lifted_struct_loss_fn get;
PythonFunctionContainer masked_maximum_fn get;
PythonFunctionContainer masked_minimum_fn get;
PythonFunctionContainer npairs_loss_fn get;
PythonFunctionContainer npairs_loss_multilabel_fn get;
PythonFunctionContainer pairwise_distance_fn get;
PythonFunctionContainer triplet_semihard_loss_fn get;
PythonFunctionContainer update_1d_tensor_fn get;
PythonFunctionContainer update_all_medoids_fn get;
PythonFunctionContainer update_medoid_per_cluster_fn get;
Public fields
bool HAS_SKLEARN
return bool
|