Type MaskedBasicLSTMCell
Namespace tensorflow.contrib.model_pruning
Parent BasicLSTMCell
Interfaces IMaskedBasicLSTMCell
Basic LSTM recurrent network cell with pruning. Overrides the call method of tensorflow BasicLSTMCell and injects the weight
masks The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training. It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline. For advanced models, please use the full `tf.compat.v1.nn.rnn_cell.LSTMCell`
that follows.
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- graph
- graph_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- output_size
- output_size_dyn
- PythonObject
- rnncell_scope
- scope_name
- scope_name_dyn
- state_size
- state_size_dyn
- stateful
- submodules
- submodules_dyn
- supports_masking
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public static methods
MaskedBasicLSTMCell NewDyn(object num_units, ImplicitContainer<T> forget_bias, ImplicitContainer<T> state_is_tuple, object activation, object reuse, object name)
Initialize the basic LSTM cell with pruning.
Parameters
-
object
num_units - int, The number of units in the LSTM cell.
-
ImplicitContainer<T>
forget_bias - float, The bias added to forget gates (see above). Must set to `0.0` manually when restoring from CudnnLSTM-trained checkpoints.
-
ImplicitContainer<T>
state_is_tuple - If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated.
-
object
activation - Activation function of the inner states. Default: `tanh`.
-
object
reuse - (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised.
-
object
name - String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. When restoring from CudnnLSTM-trained checkpoints, must use CudnnCompatibleLSTMCell instead.