Type MaskedBasicLSTMCell
Namespace tensorflow.contrib.model_pruning
Parent BasicLSTMCell
Interfaces IMaskedBasicLSTMCell
Basic LSTM recurrent network cell with pruning.  Overrides the call method of tensorflow BasicLSTMCell and injects the weight
masks  The implementation is based on: http://arxiv.org/abs/1409.2329.  We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.  It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline.  For advanced models, please use the full `tf.compat.v1.nn.rnn_cell.LSTMCell`
that follows. 
			
		
		
			Methods
Properties
- activity_regularizer
 - activity_regularizer_dyn
 - built
 - dtype
 - dtype_dyn
 - dynamic
 - dynamic_dyn
 - graph
 - graph_dyn
 - inbound_nodes
 - inbound_nodes_dyn
 - input
 - input_dyn
 - input_mask
 - input_mask_dyn
 - input_shape
 - input_shape_dyn
 - input_spec
 - input_spec_dyn
 - losses
 - losses_dyn
 - metrics
 - metrics_dyn
 - name
 - name_dyn
 - name_scope
 - name_scope_dyn
 - non_trainable_variables
 - non_trainable_variables_dyn
 - non_trainable_weights
 - non_trainable_weights_dyn
 - outbound_nodes
 - outbound_nodes_dyn
 - output
 - output_dyn
 - output_mask
 - output_mask_dyn
 - output_shape
 - output_shape_dyn
 - output_size
 - output_size_dyn
 - PythonObject
 - rnncell_scope
 - scope_name
 - scope_name_dyn
 - state_size
 - state_size_dyn
 - stateful
 - submodules
 - submodules_dyn
 - supports_masking
 - trainable
 - trainable_dyn
 - trainable_variables
 - trainable_variables_dyn
 - trainable_weights
 - trainable_weights_dyn
 - updates
 - updates_dyn
 - variables
 - variables_dyn
 - weights
 - weights_dyn
 
Public static methods
MaskedBasicLSTMCell NewDyn(object num_units, ImplicitContainer<T> forget_bias, ImplicitContainer<T> state_is_tuple, object activation, object reuse, object name)
Initialize the basic LSTM cell with pruning. 
			
				
		
	Parameters
- 
							
objectnum_units - int, The number of units in the LSTM cell.
 - 
							
ImplicitContainer<T>forget_bias - float, The bias added to forget gates (see above). Must set to `0.0` manually when restoring from CudnnLSTM-trained checkpoints.
 - 
							
ImplicitContainer<T>state_is_tuple - If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated.
 - 
							
objectactivation - Activation function of the inner states. Default: `tanh`.
 - 
							
objectreuse - (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised.
 - 
							
objectname - String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. When restoring from CudnnLSTM-trained checkpoints, must use CudnnCompatibleLSTMCell instead.