Type MultiForestMultiHeadEstimator
Namespace tensorflow.contrib.tensor_forest.random_forest
Parent Estimator
Interfaces IMultiForestMultiHeadEstimator
Methods
Properties
Public instance methods
object predict(IEnumerable<object> x, PythonFunctionContainer input_fn, IEnumerable<object> batch_size, IEnumerable<string> outputs, bool as_iterable, bool iterate_batches)
Returns predictions for given features. (deprecated arguments) Warning: SOME ARGUMENTS ARE DEPRECATED: `(as_iterable, batch_size, x)`. They will be removed after 2016-12-01.
Instructions for updating:
Estimator is decoupled from Scikit Learn interface by moving into
separate class SKCompat. Arguments x, y and batch_size are only
available in the SKCompat class, Estimator will only accept input_fn.
Example conversion:
est = Estimator(...) -> est = SKCompat(Estimator(...))
Parameters
-
IEnumerable<object>
x - Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`.
-
PythonFunctionContainer
input_fn - Input function. If set, `x` and 'batch_size' must be `None`.
-
IEnumerable<object>
batch_size - Override default batch size. If set, 'input_fn' must be 'None'.
-
IEnumerable<string>
outputs - list of `str`, name of the output to predict. If `None`, returns all.
-
bool
as_iterable - If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).
-
bool
iterate_batches - If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True.
Returns
-
object
- A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True.
object predict(IEnumerable<object> x, PythonFunctionContainer input_fn, int batch_size, IEnumerable<string> outputs, bool as_iterable, bool iterate_batches)
Returns predictions for given features. (deprecated arguments) Warning: SOME ARGUMENTS ARE DEPRECATED: `(as_iterable, batch_size, x)`. They will be removed after 2016-12-01.
Instructions for updating:
Estimator is decoupled from Scikit Learn interface by moving into
separate class SKCompat. Arguments x, y and batch_size are only
available in the SKCompat class, Estimator will only accept input_fn.
Example conversion:
est = Estimator(...) -> est = SKCompat(Estimator(...))
Parameters
-
IEnumerable<object>
x - Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`.
-
PythonFunctionContainer
input_fn - Input function. If set, `x` and 'batch_size' must be `None`.
-
int
batch_size - Override default batch size. If set, 'input_fn' must be 'None'.
-
IEnumerable<string>
outputs - list of `str`, name of the output to predict. If `None`, returns all.
-
bool
as_iterable - If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).
-
bool
iterate_batches - If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True.
Returns
-
object
- A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True.
object predict(object x, PythonFunctionContainer input_fn, IEnumerable<object> batch_size, IEnumerable<string> outputs, bool as_iterable, bool iterate_batches)
Returns predictions for given features. (deprecated arguments) Warning: SOME ARGUMENTS ARE DEPRECATED: `(as_iterable, batch_size, x)`. They will be removed after 2016-12-01.
Instructions for updating:
Estimator is decoupled from Scikit Learn interface by moving into
separate class SKCompat. Arguments x, y and batch_size are only
available in the SKCompat class, Estimator will only accept input_fn.
Example conversion:
est = Estimator(...) -> est = SKCompat(Estimator(...))
Parameters
-
object
x - Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`.
-
PythonFunctionContainer
input_fn - Input function. If set, `x` and 'batch_size' must be `None`.
-
IEnumerable<object>
batch_size - Override default batch size. If set, 'input_fn' must be 'None'.
-
IEnumerable<string>
outputs - list of `str`, name of the output to predict. If `None`, returns all.
-
bool
as_iterable - If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).
-
bool
iterate_batches - If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True.
Returns
-
object
- A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True.
object predict(object x, PythonFunctionContainer input_fn, int batch_size, IEnumerable<string> outputs, bool as_iterable, bool iterate_batches)
Returns predictions for given features. (deprecated arguments) Warning: SOME ARGUMENTS ARE DEPRECATED: `(as_iterable, batch_size, x)`. They will be removed after 2016-12-01.
Instructions for updating:
Estimator is decoupled from Scikit Learn interface by moving into
separate class SKCompat. Arguments x, y and batch_size are only
available in the SKCompat class, Estimator will only accept input_fn.
Example conversion:
est = Estimator(...) -> est = SKCompat(Estimator(...))
Parameters
-
object
x - Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`.
-
PythonFunctionContainer
input_fn - Input function. If set, `x` and 'batch_size' must be `None`.
-
int
batch_size - Override default batch size. If set, 'input_fn' must be 'None'.
-
IEnumerable<string>
outputs - list of `str`, name of the output to predict. If `None`, returns all.
-
bool
as_iterable - If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features).
-
bool
iterate_batches - If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True.
Returns
-
object
- A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True.