Type Uniform
Namespace tensorflow.distributions
Parent Distribution
Interfaces IUniform
Uniform distribution with `low` and `high` parameters.  #### Mathematical Details  The probability density function (pdf) is,  ```none
pdf(x; a, b) = I[a <= x < b] / Z
Z = b - a
```  where  - `low = a`,
- `high = b`,
- `Z` is the normalizing constant, and
- `I[predicate]` is the [indicator function](
https://en.wikipedia.org/wiki/Indicator_function) for `predicate`.  The parameters `low` and `high` must be shaped in a way that supports
broadcasting (e.g., `high - low` is a valid operation).  #### Examples  
		
		
			
  Show Example
  
			# Without broadcasting:
            u1 = Uniform(low=3.0, high=4.0)  # a single uniform distribution [3, 4]
            u2 = Uniform(low=[1.0, 2.0],
                         high=[3.0, 4.0])  # 2 distributions [1, 3], [2, 4]
            u3 = Uniform(low=[[1.0, 2.0],
                              [3.0, 4.0]],
                         high=[[1.5, 2.5],
                               [3.5, 4.5]])  # 4 distributions 
Methods
Properties
Public instance methods
double range(string name)
`high - low`. 
		
	object range_dyn(ImplicitContainer<T> name)
`high - low`. 
		
	Public properties
object allow_nan_stats get;
object allow_nan_stats_dyn get;
TensorShape batch_shape get;
object batch_shape_dyn get;
object dtype get;
object dtype_dyn get;
TensorShape event_shape get;
object event_shape_dyn get;
object high get;
Upper boundary of the output interval. 
		
	object high_dyn get;
Upper boundary of the output interval. 
		
	object low get;
Lower boundary of the output interval. 
		
	object low_dyn get;
Lower boundary of the output interval.