Type SequenceFeatures
Namespace tensorflow.keras.experimental
Parent _BaseFeaturesLayer
Interfaces ISequenceFeatures
A layer for sequence input. All `feature_columns` must be sequence dense columns with the same
`sequence_length`. The output of this method can be fed into sequence
networks, such as RNN. The output of this method is a 3D `Tensor` of shape `[batch_size, T, D]`.
`T` is the maximum sequence length for this batch, which could differ from
batch to batch. If multiple `feature_columns` are given with `Di` `num_elements` each, their
outputs are concatenated. So, the final `Tensor` has shape
`[batch_size, T, D0 + D1 +... + Dn]`. Example:
Show Example
rating = sequence_numeric_column('rating') watches = sequence_categorical_column_with_identity( 'watches', num_buckets=1000) watches_embedding = embedding_column(watches, dimension=10) columns = [rating, watches_embedding] sequence_input_layer = SequenceFeatures(columns) features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_input, sequence_length = sequence_input_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length) rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- stateful
- submodules
- submodules_dyn
- supports_masking
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public instance methods
Tensor call(PythonClassContainer features)
Tensor call(string features)
Tensor call(IndexedSlices features)
Public static methods
SequenceFeatures NewDyn(object feature_columns, ImplicitContainer<T> trainable, object name, IDictionary<string, object> kwargs)
Constructs a DenseFeatures layer.
Parameters
-
object
feature_columns - An iterable containing the FeatureColumns to use as inputs to your model. All items should be instances of classes derived from `DenseColumn` such as `numeric_column`, `embedding_column`, `bucketized_column`, `indicator_column`. If you have categorical features, you can wrap them with an `embedding_column` or `indicator_column`.
-
ImplicitContainer<T>
trainable - Boolean, whether the layer's variables will be updated via gradient descent during training.
-
object
name - Name to give to the DenseFeatures.
-
IDictionary<string, object>
kwargs - Keyword arguments to construct a layer.