Type Sequential
Namespace tensorflow.keras
Parent Model
Interfaces ISequential
Linear stack of layers.
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_names
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- inputs
- layers
- layers_dyn
- loss
- loss_functions
- loss_weights
- losses
- losses_dyn
- metrics
- metrics_dyn
- metrics_names
- metrics_names_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- optimizer
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_names
- output_shape
- output_shape_dyn
- outputs
- predict_function
- PythonObject
- run_eagerly
- run_eagerly_dyn
- sample_weight_mode
- sample_weights
- sample_weights_dyn
- state_updates
- state_updates_dyn
- stateful
- stateful_dyn
- submodules
- submodules_dyn
- supports_masking
- test_function
- total_loss
- train_function
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public instance methods
object add(PythonClassContainer layer)
Adds a layer instance on top of the layer stack.
Parameters
-
PythonClassContainer
layer - layer instance.
object add(object layer)
Adds a layer instance on top of the layer stack.
Parameters
-
object
layer - layer instance.
object add_dyn(object layer)
Adds a layer instance on top of the layer stack.
Parameters
-
object
layer - layer instance.
void pop()
Removes the last layer in the model.
object pop_dyn()
Removes the last layer in the model.
object predict_classes(object x, int batch_size, int verbose)
Generate class predictions for the input samples. The input samples are processed batch by batch.
Parameters
-
object
x - input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs).
-
int
batch_size - integer.
-
int
verbose - verbosity mode, 0 or 1.
Returns
-
object
- A numpy array of class predictions.
object predict_classes_dyn(object x, ImplicitContainer<T> batch_size, ImplicitContainer<T> verbose)
Generate class predictions for the input samples. The input samples are processed batch by batch.
Parameters
-
object
x - input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs).
-
ImplicitContainer<T>
batch_size - integer.
-
ImplicitContainer<T>
verbose - verbosity mode, 0 or 1.
Returns
-
object
- A numpy array of class predictions.
object predict_proba(object x, int batch_size, int verbose)
Generates class probability predictions for the input samples. The input samples are processed batch by batch.
Parameters
-
object
x - input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs).
-
int
batch_size - integer.
-
int
verbose - verbosity mode, 0 or 1.
Returns
-
object
- A Numpy array of probability predictions.
object predict_proba_dyn(object x, ImplicitContainer<T> batch_size, ImplicitContainer<T> verbose)
Generates class probability predictions for the input samples. The input samples are processed batch by batch.
Parameters
-
object
x - input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs).
-
ImplicitContainer<T>
batch_size - integer.
-
ImplicitContainer<T>
verbose - verbosity mode, 0 or 1.
Returns
-
object
- A Numpy array of probability predictions.
Public properties
PythonFunctionContainer activity_regularizer get; set;
object activity_regularizer_dyn get; set;
bool built get; set;
object dtype get;
object dtype_dyn get;
bool dynamic get;
object dynamic_dyn get;
IList<Node> inbound_nodes get;
object inbound_nodes_dyn get;
IList<object> input get;
object input_dyn get;
object input_mask get;
object input_mask_dyn get;
IList<object> input_names get; set;
IList<object> input_shape get;
object input_shape_dyn get;
object input_spec get; set;
Gets the network's input specs.
object input_spec_dyn get;
Gets the network's input specs.