Type LinearOperatorLowRankUpdate
Namespace tensorflow.linalg
Parent LinearOperator
Interfaces ILinearOperatorLowRankUpdate
Perturb a `LinearOperator` with a rank `K` update. This operator acts like a [batch] matrix `A` with shape
`[B1,...,Bb, M, N]` for some `b >= 0`. The first `b` indices index a
batch member. For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
an `M x N` matrix. `LinearOperatorLowRankUpdate` represents `A = L + U D V^H`, where ```
L, is a LinearOperator representing [batch] M x N matrices
U, is a [batch] M x K matrix. Typically K << M.
D, is a [batch] K x K matrix.
V, is a [batch] N x K matrix. Typically K << N.
V^H is the Hermitian transpose (adjoint) of V.
``` If `M = N`, determinants and solves are done using the matrix determinant
lemma and Woodbury identities, and thus require L and D to be non-singular. Solves and determinants will be attempted unless the "is_non_singular"
property of L and D is False. In the event that L and D are positive-definite, and U = V, solves and
determinants can be done using a Cholesky factorization.
### Shape compatibility This operator acts on [batch] matrix with compatible shape.
`x` is a batch matrix with compatible shape for `matmul` and `solve` if ```
operator.shape = [B1,...,Bb] + [M, N], with b >= 0
x.shape = [B1,...,Bb] + [N, R], with R >= 0.
``` ### Performance Suppose `operator` is a `LinearOperatorLowRankUpdate` of shape `[M, N]`,
made from a rank `K` update of `base_operator` which performs `.matmul(x)` on
`x` having `x.shape = [N, R]` with `O(L_matmul*N*R)` complexity (and similarly
for `solve`, `determinant`. Then, if `x.shape = [N, R]`, * `operator.matmul(x)` is `O(L_matmul*N*R + K*N*R)` and if `M = N`, * `operator.solve(x)` is `O(L_matmul*N*R + N*K*R + K^2*R + K^3)`
* `operator.determinant()` is `O(L_determinant + L_solve*N*K + K^2*N + K^3)` If instead `operator` and `x` have shape `[B1,...,Bb, M, N]` and
`[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`. #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`,
for `X = non_singular`, `self_adjoint`, `positive_definite`,
`diag_update_positive` and `square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the
property `X`. This is a promise that should be fulfilled, but is *not* a
runtime assert. For example, finite floating point precision may result
in these promises being violated.
* If `is_X == False`, callers should expect the operator to not have `X`.
* If `is_X == None` (the default), callers should have no expectation either
way.
Show Example
# Create a 3 x 3 diagonal linear operator. diag_operator = LinearOperatorDiag( diag_update=[1., 2., 3.], is_non_singular=True, is_self_adjoint=True, is_positive_definite=True) # Perturb with a rank 2 perturbation operator = LinearOperatorLowRankUpdate( operator=diag_operator, u=[[1., 2.], [-1., 3.], [0., 0.]], diag_update=[11., 12.], v=[[1., 2.], [-1., 3.], [10., 10.]]) operator.shape ==> [3, 3] operator.log_abs_determinant() ==> scalar Tensor x =... Shape [3, 4] Tensor operator.matmul(x) ==> Shape [3, 4] Tensor
Methods
Properties
- base_operator
- base_operator_dyn
- batch_shape
- batch_shape_dyn
- diag_operator
- diag_operator_dyn
- diag_update
- diag_update_dyn
- domain_dimension
- domain_dimension_dyn
- dtype
- dtype_dyn
- graph_parents
- graph_parents_dyn
- is_diag_update_positive
- is_diag_update_positive_dyn
- is_non_singular
- is_non_singular_dyn
- is_positive_definite
- is_positive_definite_dyn
- is_self_adjoint
- is_self_adjoint_dyn
- is_square
- is_square_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- PythonObject
- range_dimension
- range_dimension_dyn
- shape
- shape_dyn
- submodules
- submodules_dyn
- tensor_rank
- tensor_rank_dyn
- trainable_variables
- trainable_variables_dyn
- u
- u_dyn
- v
- v_dyn
- variables
- variables_dyn
Public static methods
LinearOperatorLowRankUpdate NewDyn(object base_operator, object u, object diag_update, object v, object is_diag_update_positive, object is_non_singular, object is_self_adjoint, object is_positive_definite, object is_square, ImplicitContainer<T> name)
Initialize a `LinearOperatorLowRankUpdate`. This creates a `LinearOperator` of the form `A = L + U D V^H`, with
`L` a `LinearOperator`, `U, V` both [batch] matrices, and `D` a [batch]
diagonal matrix. If `L` is non-singular, solves and determinants are available.
Solves/determinants both involve a solve/determinant of a `K x K` system.
In the event that L and D are self-adjoint positive-definite, and U = V,
this can be done using a Cholesky factorization. The user should set the
`is_X` matrix property hints, which will trigger the appropriate code path.
Parameters
-
object
base_operator - Shape `[B1,...,Bb, M, N]`.
-
object
u - Shape `[B1,...,Bb, M, K]` `Tensor` of same `dtype` as `base_operator`. This is `U` above.
-
object
diag_update - Optional shape `[B1,...,Bb, K]` `Tensor` with same `dtype` as `base_operator`. This is the diagonal of `D` above. Defaults to `D` being the identity operator.
-
object
v - Optional `Tensor` of same `dtype` as `u` and shape `[B1,...,Bb, N, K]` Defaults to `v = u`, in which case the perturbation is symmetric. If `M != N`, then `v` must be set since the perturbation is not square.
-
object
is_diag_update_positive - Python `bool`. If `True`, expect `diag_update > 0`.
-
object
is_non_singular - Expect that this operator is non-singular. Default is `None`, unless `is_positive_definite` is auto-set to be `True` (see below).
-
object
is_self_adjoint - Expect that this operator is equal to its hermitian transpose. Default is `None`, unless `base_operator` is self-adjoint and `v = None` (meaning `u=v`), in which case this defaults to `True`.
-
object
is_positive_definite - Expect that this operator is positive definite. Default is `None`, unless `base_operator` is positive-definite `v = None` (meaning `u=v`), and `is_diag_update_positive`, in which case this defaults to `True`. Note that we say an operator is positive definite when the quadratic form `x^H A x` has positive real part for all nonzero `x`.
-
object
is_square - Expect that this operator acts like square [batch] matrices.
-
ImplicitContainer<T>
name - A name for this `LinearOperator`.
Public properties
object base_operator get;
If this operator is `A = L + U D V^H`, this is the `L`.
object base_operator_dyn get;
If this operator is `A = L + U D V^H`, this is the `L`.
object batch_shape get;
object batch_shape_dyn get;
object diag_operator get;
If this operator is `A = L + U D V^H`, this is `D`.
object diag_operator_dyn get;
If this operator is `A = L + U D V^H`, this is `D`.
object diag_update get;
If this operator is `A = L + U D V^H`, this is the diagonal of `D`.
object diag_update_dyn get;
If this operator is `A = L + U D V^H`, this is the diagonal of `D`.
Dimension domain_dimension get;
object domain_dimension_dyn get;
object dtype get;
object dtype_dyn get;
IList<object> graph_parents get;
object graph_parents_dyn get;
Nullable<bool> is_diag_update_positive get;
If this operator is `A = L + U D V^H`, this hints `D > 0` elementwise.
object is_diag_update_positive_dyn get;
If this operator is `A = L + U D V^H`, this hints `D > 0` elementwise.
Nullable<bool> is_non_singular get;
object is_non_singular_dyn get;
object is_positive_definite get;
object is_positive_definite_dyn get;
object is_self_adjoint get;
object is_self_adjoint_dyn get;
Nullable<bool> is_square get;
object is_square_dyn get;
object name get;
object name_dyn get;
object name_scope get;
object name_scope_dyn get;
object PythonObject get;
Dimension range_dimension get;
object range_dimension_dyn get;
TensorShape shape get;
object shape_dyn get;
ValueTuple<object> submodules get;
object submodules_dyn get;
Nullable<int> tensor_rank get;
object tensor_rank_dyn get;
object trainable_variables get;
object trainable_variables_dyn get;
object u get;
If this operator is `A = L + U D V^H`, this is the `U`.
object u_dyn get;
If this operator is `A = L + U D V^H`, this is the `U`.
object v get;
If this operator is `A = L + U D V^H`, this is the `V`.
object v_dyn get;
If this operator is `A = L + U D V^H`, this is the `V`.