Type TFLiteLSTMCell
Namespace tensorflow.lite.experimental.nn
Parent LayerRNNCell
Interfaces ITFLiteLSTMCell
Long short-term memory unit (LSTM) recurrent network cell. This is used only for TfLite, it provides hints and it also makes the
variables in the desired for the tflite ops (transposed and seaparated). The default non-peephole implementation is based on: https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf Felix Gers, Jurgen Schmidhuber, and Fred Cummins.
"Learning to forget: Continual prediction with LSTM." IET, 850-855, 1999. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays.
"Long short-term memory recurrent neural network architectures for
large scale acoustic modeling." INTERSPEECH, 2014. The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer. Note that this cell is not optimized for performance. Please use
tf.contrib.cudnn_rnn.CudnnLSTM
for better performance on GPU, or
tf.contrib.rnn.LSTMBlockCell
and tf.contrib.rnn.LSTMBlockFusedCell
for
better performance on CPU.
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- cell_bias
- cell_to_cell_w
- cell_to_forget_w
- cell_to_input_w
- cell_to_output_w
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- forget_bias
- graph
- graph_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_bias
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- input_to_cell_w
- input_to_forget_w
- input_to_input_w
- input_to_output_w
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_bias
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- output_size
- output_size_dyn
- PythonObject
- rnncell_scope
- scope_name
- scope_name_dyn
- state_size
- state_size_dyn
- stateful
- submodules
- submodules_dyn
- supports_masking
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public static methods
TFLiteLSTMCell NewDyn(object num_units, ImplicitContainer<T> use_peepholes, object cell_clip, object initializer, object num_proj, object proj_clip, object num_unit_shards, object num_proj_shards, ImplicitContainer<T> forget_bias, ImplicitContainer<T> state_is_tuple, object activation, object reuse, object name, object dtype)
Initialize the parameters for an LSTM cell.
Parameters
-
object
num_units - int, The number of units in the LSTM cell.
-
ImplicitContainer<T>
use_peepholes - bool, set True to enable diagonal/peephole connections.
-
object
cell_clip - (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation.
-
object
initializer - (optional) The initializer to use for the weight and projection matrices.
-
object
num_proj - (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed.
-
object
proj_clip - (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`.
-
object
num_unit_shards - Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead.
-
object
num_proj_shards - Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead.
-
ImplicitContainer<T>
forget_bias - Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to `0.0` when restoring from CudnnLSTM trained checkpoints.
-
ImplicitContainer<T>
state_is_tuple - If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated.
-
object
activation - Activation function of the inner states. Default: `tanh`.
-
object
reuse - (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised.
-
object
name - String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases.
-
object
dtype - Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. When restoring from CudnnLSTM-trained checkpoints, use `CudnnCompatibleLSTMCell` instead.
Public properties
PythonFunctionContainer activity_regularizer get; set;
object activity_regularizer_dyn get; set;
bool built get; set;
object cell_bias get; set;
object cell_to_cell_w get; set;
object cell_to_forget_w get; set;
object cell_to_input_w get; set;
object cell_to_output_w get; set;
object dtype get;
object dtype_dyn get;
bool dynamic get;
object dynamic_dyn get;
object forget_bias get; set;
object graph get;
object graph_dyn get;
IList<Node> inbound_nodes get;
object inbound_nodes_dyn get;
IList<object> input get;
object input_bias get; set;
object input_dyn get;
object input_mask get;
object input_mask_dyn get;
IList<object> input_shape get;
object input_shape_dyn get;
object input_spec get; set;
object input_spec_dyn get; set;
object input_to_cell_w get; set;
object input_to_forget_w get; set;
object input_to_input_w get; set;
object input_to_output_w get; set;
IList<object> losses get;
object losses_dyn get;
IList<object> metrics get;
object metrics_dyn get;
object name get;
object name_dyn get;
object name_scope get;
object name_scope_dyn get;
IList<object> non_trainable_variables get;
object non_trainable_variables_dyn get;
IList<object> non_trainable_weights get;
object non_trainable_weights_dyn get;
IList<object> outbound_nodes get;
object outbound_nodes_dyn get;
IList<object> output get;
object output_bias get; set;
object output_dyn get;
object output_mask get;
object output_mask_dyn get;
object output_shape get;
object output_shape_dyn get;
object output_size get;
Integer or TensorShape: size of outputs produced by this cell.
object output_size_dyn get;
Integer or TensorShape: size of outputs produced by this cell.
object PythonObject get;
object rnncell_scope get; set;
string scope_name get;
object scope_name_dyn get;
object state_size get;
size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
object state_size_dyn get;
size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.