Type LSTMCell
Namespace tensorflow.nn.rnn_cell
Parent LayerRNNCell
Interfaces ILSTMCell
Long short-term memory unit (LSTM) recurrent network cell.  The default non-peephole implementation is based on:  https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf  Felix Gers, Jurgen Schmidhuber, and Fred Cummins.
"Learning to forget: Continual prediction with LSTM." IET, 850-855, 1999.  The peephole implementation is based on:  https://research.google.com/pubs/archive/43905.pdf  Hasim Sak, Andrew Senior, and Francoise Beaufays.
"Long short-term memory recurrent neural network architectures for
large scale acoustic modeling." INTERSPEECH, 2014.  The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer.  Note that this cell is not optimized for performance. Please use
		
		
			tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU, or
tf.contrib.rnn.LSTMBlockCell and tf.contrib.rnn.LSTMBlockFusedCell for
better performance on CPU. 
			Methods
Properties
- activity_regularizer
 - activity_regularizer_dyn
 - built
 - dtype
 - dtype_dyn
 - dynamic
 - dynamic_dyn
 - graph
 - graph_dyn
 - inbound_nodes
 - inbound_nodes_dyn
 - input
 - input_dyn
 - input_mask
 - input_mask_dyn
 - input_shape
 - input_shape_dyn
 - input_spec
 - input_spec_dyn
 - losses
 - losses_dyn
 - metrics
 - metrics_dyn
 - name
 - name_dyn
 - name_scope
 - name_scope_dyn
 - non_trainable_variables
 - non_trainable_variables_dyn
 - non_trainable_weights
 - non_trainable_weights_dyn
 - outbound_nodes
 - outbound_nodes_dyn
 - output
 - output_dyn
 - output_mask
 - output_mask_dyn
 - output_shape
 - output_shape_dyn
 - output_size
 - output_size_dyn
 - PythonObject
 - rnncell_scope
 - scope_name
 - scope_name_dyn
 - state_size
 - state_size_dyn
 - stateful
 - submodules
 - submodules_dyn
 - supports_masking
 - trainable
 - trainable_dyn
 - trainable_variables
 - trainable_variables_dyn
 - trainable_weights
 - trainable_weights_dyn
 - updates
 - updates_dyn
 - variables
 - variables_dyn
 - weights
 - weights_dyn
 
Public static methods
LSTMCell NewDyn(object num_units, ImplicitContainer<T> use_peepholes, object cell_clip, object initializer, object num_proj, object proj_clip, object num_unit_shards, object num_proj_shards, ImplicitContainer<T> forget_bias, ImplicitContainer<T> state_is_tuple, object activation, object reuse, object name, object dtype, IDictionary<string, object> kwargs)
Initialize the parameters for an LSTM cell. (deprecated)  Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
This class is equivalent as tf.keras.layers.LSTMCell, and will be replaced by that in Tensorflow 2.0. 
			
				
		
	Parameters
- 
							
objectnum_units - int, The number of units in the LSTM cell.
 - 
							
ImplicitContainer<T>use_peepholes - bool, set True to enable diagonal/peephole connections.
 - 
							
objectcell_clip - (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation.
 - 
							
objectinitializer - (optional) The initializer to use for the weight and projection matrices.
 - 
							
objectnum_proj - (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed.
 - 
							
objectproj_clip - (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`.
 - 
							
objectnum_unit_shards - Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead.
 - 
							
objectnum_proj_shards - Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead.
 - 
							
ImplicitContainer<T>forget_bias - Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to `0.0` when restoring from CudnnLSTM trained checkpoints.
 - 
							
ImplicitContainer<T>state_is_tuple - If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated.
 - 
							
objectactivation - Activation function of the inner states. Default: `tanh`. It could also be string that is within Keras activation function names.
 - 
							
objectreuse - (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised.
 - 
							
objectname - String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases.
 - 
							
objectdtype - Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`.
 - 
							
IDictionary<string, object>kwargs - Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). When restoring from CudnnLSTM-trained checkpoints, use `CudnnCompatibleLSTMCell` instead.
 
Public properties
PythonFunctionContainer activity_regularizer get; set;
object activity_regularizer_dyn get; set;
bool built get; set;
object dtype get;
object dtype_dyn get;
bool dynamic get;
object dynamic_dyn get;
object graph get;
object graph_dyn get;
IList<Node> inbound_nodes get;
object inbound_nodes_dyn get;
IList<object> input get;
object input_dyn get;
object input_mask get;
object input_mask_dyn get;
IList<object> input_shape get;
object input_shape_dyn get;
object input_spec get; set;
object input_spec_dyn get; set;
IList<object> losses get;
object losses_dyn get;
IList<object> metrics get;
object metrics_dyn get;
object name get;
object name_dyn get;
object name_scope get;
object name_scope_dyn get;
IList<object> non_trainable_variables get;
object non_trainable_variables_dyn get;
IList<object> non_trainable_weights get;
object non_trainable_weights_dyn get;
IList<object> outbound_nodes get;
object outbound_nodes_dyn get;
IList<object> output get;
object output_dyn get;
object output_mask get;
object output_mask_dyn get;
object output_shape get;
object output_shape_dyn get;
object output_size get;
Integer or TensorShape: size of outputs produced by this cell. 
		
	object output_size_dyn get;
Integer or TensorShape: size of outputs produced by this cell. 
		
	object PythonObject get;
object rnncell_scope get; set;
string scope_name get;
object scope_name_dyn get;
object state_size get;
size(s) of state(s) used by this cell.  It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes. 
		
	object state_size_dyn get;
size(s) of state(s) used by this cell.  It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.