Type ProfileOptionBuilder
Namespace tensorflow.profiler
Parent PythonObjectContainer
Interfaces IProfileOptionBuilder
Option Builder for Profiling API. For tutorial on the options, see
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md
Show Example
# Users can use pre-built options: opts = ( tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()) # Or, build your own options: opts = (tf.compat.v1.profiler.ProfileOptionBuilder() .with_max_depth(10) .with_min_micros(1000) .select(['accelerator_micros']) .with_stdout_output() .build() # Or customize the pre-built options: opts = (tf.compat.v1.profiler.ProfileOptionBuilder( tf.profiler.ProfileOptionBuilder.time_and_memory()) .with_displaying_options(show_name_regexes=['.*rnn.*']) .build()) # Finally, profiling with the options: _ = tf.compat.v1.profiler.profile(tf.compat.v1.get_default_graph(), run_meta=run_meta, cmd='scope', options=opts)
Methods
- account_displayed_op_only
- account_displayed_op_only_dyn
- float_operation
- float_operation_dyn
- order_by
- order_by_dyn
- select
- select_dyn
- time_and_memory
- time_and_memory_dyn
- trainable_variables_parameter
- trainable_variables_parameter_dyn
- with_accounted_types
- with_accounted_types_dyn
- with_empty_output
- with_empty_output_dyn
- with_file_output
- with_file_output_dyn
- with_max_depth
- with_max_depth_dyn
- with_min_execution_time
- with_min_execution_time_dyn
- with_min_float_operations
- with_min_float_operations_dyn
- with_min_memory
- with_min_memory_dyn
- with_min_occurrence
- with_min_occurrence_dyn
- with_min_parameters
- with_min_parameters_dyn
- with_node_names
- with_node_names_dyn
- with_pprof_output
- with_pprof_output_dyn
- with_stdout_output
- with_stdout_output_dyn
- with_step
- with_step_dyn
- with_timeline_output
- with_timeline_output_dyn
Properties
Public instance methods
ProfileOptionBuilder account_displayed_op_only(bool is_true)
Whether only account the statistics of displayed profiler nodes.
Parameters
-
bool
is_true - If true, only account statistics of nodes eventually displayed by the outputs. Otherwise, a node's statistics are accounted by its parents as long as it's types match 'account_type_regexes', even if it is hidden from the output, say, by hide_name_regexes.
Returns
-
ProfileOptionBuilder
- self
object account_displayed_op_only_dyn(object is_true)
Whether only account the statistics of displayed profiler nodes.
Parameters
-
object
is_true - If true, only account statistics of nodes eventually displayed by the outputs. Otherwise, a node's statistics are accounted by its parents as long as it's types match 'account_type_regexes', even if it is hidden from the output, say, by hide_name_regexes.
Returns
-
object
- self
ProfileOptionBuilder order_by(string attribute)
Order the displayed profiler nodes based on a attribute. Supported attribute includes micros, bytes, occurrence, params, etc.
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md
Parameters
-
string
attribute - An attribute the profiler node has.
Returns
-
ProfileOptionBuilder
- self
object order_by_dyn(object attribute)
Order the displayed profiler nodes based on a attribute. Supported attribute includes micros, bytes, occurrence, params, etc.
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md
Parameters
-
object
attribute - An attribute the profiler node has.
Returns
-
object
- self
ProfileOptionBuilder select(IEnumerable<string> attributes)
Select the attributes to display. See https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md
for supported attributes.
Parameters
-
IEnumerable<string>
attributes - A list of attribute the profiler node has.
Returns
-
ProfileOptionBuilder
- self
object select_dyn(object attributes)
Select the attributes to display. See https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md
for supported attributes.
Parameters
-
object
attributes - A list of attribute the profiler node has.
Returns
-
object
- self
ProfileOptionBuilder with_accounted_types(IEnumerable<string> account_type_regexes)
Selectively counting statistics based on node types. Here, 'types' means the profiler nodes' properties. Profiler by default
consider device name (e.g. /job:xx/.../device:GPU:0) and operation type
(e.g. MatMul) as profiler nodes' properties. User can also associate
customized 'types' to profiler nodes through OpLogProto proto. For example, user can select profiler nodes placed on gpu:0 with:
`account_type_regexes=['.*gpu:0.*']` If none of a node's properties match the specified regexes, the node is
not displayed nor accounted.
Parameters
-
IEnumerable<string>
account_type_regexes - A list of regexes specifying the types.
Returns
-
ProfileOptionBuilder
- self.
object with_accounted_types_dyn(object account_type_regexes)
Selectively counting statistics based on node types. Here, 'types' means the profiler nodes' properties. Profiler by default
consider device name (e.g. /job:xx/.../device:GPU:0) and operation type
(e.g. MatMul) as profiler nodes' properties. User can also associate
customized 'types' to profiler nodes through OpLogProto proto. For example, user can select profiler nodes placed on gpu:0 with:
`account_type_regexes=['.*gpu:0.*']` If none of a node's properties match the specified regexes, the node is
not displayed nor accounted.
Parameters
-
object
account_type_regexes - A list of regexes specifying the types.
Returns
-
object
- self.
ProfileOptionBuilder with_empty_output()
Do not generate side-effect outputs.
object with_empty_output_dyn()
Do not generate side-effect outputs.
ProfileOptionBuilder with_file_output(object outfile)
Print the result to a file.
object with_file_output_dyn(object outfile)
Print the result to a file.
ProfileOptionBuilder with_max_depth(int max_depth)
Set the maximum depth of display. The depth depends on profiling view. For 'scope' view, it's the
depth of name scope hierarchy (tree), for 'op' view, it's the number
of operation types (list), etc.
Parameters
-
int
max_depth - Maximum depth of the data structure to display.
Returns
-
ProfileOptionBuilder
- self
object with_max_depth_dyn(object max_depth)
Set the maximum depth of display. The depth depends on profiling view. For 'scope' view, it's the
depth of name scope hierarchy (tree), for 'op' view, it's the number
of operation types (list), etc.
Parameters
-
object
max_depth - Maximum depth of the data structure to display.
Returns
-
object
- self
ProfileOptionBuilder with_min_execution_time(int min_micros, int min_accelerator_micros, int min_cpu_micros)
Only show profiler nodes consuming no less than 'min_micros'.
Parameters
-
int
min_micros - Only show profiler nodes with execution time no less than this. It sums accelerator and cpu times.
-
int
min_accelerator_micros - Only show profiler nodes spend no less than this time on accelerator (e.g. GPU).
-
int
min_cpu_micros - Only show profiler nodes spend no less than this time on cpu.
Returns
-
ProfileOptionBuilder
- self
object with_min_execution_time_dyn(ImplicitContainer<T> min_micros, ImplicitContainer<T> min_accelerator_micros, ImplicitContainer<T> min_cpu_micros)
Only show profiler nodes consuming no less than 'min_micros'.
Parameters
-
ImplicitContainer<T>
min_micros - Only show profiler nodes with execution time no less than this. It sums accelerator and cpu times.
-
ImplicitContainer<T>
min_accelerator_micros - Only show profiler nodes spend no less than this time on accelerator (e.g. GPU).
-
ImplicitContainer<T>
min_cpu_micros - Only show profiler nodes spend no less than this time on cpu.
Returns
-
object
- self
ProfileOptionBuilder with_min_float_operations(object min_float_ops)
Only show profiler nodes consuming no less than 'min_float_ops'. Please see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/profile_model_architecture.md
on the caveats of calculating float operations.
Parameters
-
object
min_float_ops - Only show profiler nodes with float operations no less than this.
Returns
-
ProfileOptionBuilder
- self
object with_min_float_operations_dyn(object min_float_ops)
Only show profiler nodes consuming no less than 'min_float_ops'. Please see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/profile_model_architecture.md
on the caveats of calculating float operations.
Parameters
-
object
min_float_ops - Only show profiler nodes with float operations no less than this.
Returns
-
object
- self
ProfileOptionBuilder with_min_memory(int min_bytes, int min_peak_bytes, int min_residual_bytes, int min_output_bytes)
Only show profiler nodes consuming no less than 'min_bytes'.
Parameters
-
int
min_bytes - Only show profiler nodes requested to allocate no less bytes than this.
-
int
min_peak_bytes - Only show profiler nodes using no less than this bytes at peak (high watermark). For profiler nodes consist of multiple graph nodes, it sums the graph nodes' peak_bytes.
-
int
min_residual_bytes - Only show profiler nodes have no less than this bytes not being de-allocated after Compute() ends. For profiler nodes consist of multiple graph nodes, it sums the graph nodes' residual_bytes.
-
int
min_output_bytes - Only show profiler nodes have no less than this bytes output. The output are not necessarily allocated by this profiler nodes.
Returns
-
ProfileOptionBuilder
- self
object with_min_memory_dyn(ImplicitContainer<T> min_bytes, ImplicitContainer<T> min_peak_bytes, ImplicitContainer<T> min_residual_bytes, ImplicitContainer<T> min_output_bytes)
Only show profiler nodes consuming no less than 'min_bytes'.
Parameters
-
ImplicitContainer<T>
min_bytes - Only show profiler nodes requested to allocate no less bytes than this.
-
ImplicitContainer<T>
min_peak_bytes - Only show profiler nodes using no less than this bytes at peak (high watermark). For profiler nodes consist of multiple graph nodes, it sums the graph nodes' peak_bytes.
-
ImplicitContainer<T>
min_residual_bytes - Only show profiler nodes have no less than this bytes not being de-allocated after Compute() ends. For profiler nodes consist of multiple graph nodes, it sums the graph nodes' residual_bytes.
-
ImplicitContainer<T>
min_output_bytes - Only show profiler nodes have no less than this bytes output. The output are not necessarily allocated by this profiler nodes.
Returns
-
object
- self
ProfileOptionBuilder with_min_occurrence(int min_occurrence)
Only show profiler nodes including no less than 'min_occurrence' graph nodes. A "node" means a profiler output node, which can be a python line
(code view), an operation type (op view), or a graph node
(graph/scope view). A python line includes all graph nodes created by that
line, while an operation type includes all graph nodes of that type.
Parameters
-
int
min_occurrence - Only show nodes including no less than this.
Returns
-
ProfileOptionBuilder
- self
object with_min_occurrence_dyn(object min_occurrence)
Only show profiler nodes including no less than 'min_occurrence' graph nodes. A "node" means a profiler output node, which can be a python line
(code view), an operation type (op view), or a graph node
(graph/scope view). A python line includes all graph nodes created by that
line, while an operation type includes all graph nodes of that type.
Parameters
-
object
min_occurrence - Only show nodes including no less than this.
Returns
-
object
- self
ProfileOptionBuilder with_min_parameters(object min_params)
Only show profiler nodes holding no less than 'min_params' parameters. 'Parameters' normally refers the weights of in TensorFlow variables.
It reflects the 'capacity' of models.
Parameters
-
object
min_params - Only show profiler nodes holding number parameters no less than this.
Returns
-
ProfileOptionBuilder
- self
object with_min_parameters_dyn(object min_params)
Only show profiler nodes holding no less than 'min_params' parameters. 'Parameters' normally refers the weights of in TensorFlow variables.
It reflects the 'capacity' of models.
Parameters
-
object
min_params - Only show profiler nodes holding number parameters no less than this.
Returns
-
object
- self
ProfileOptionBuilder with_node_names(object start_name_regexes, IEnumerable<string> show_name_regexes, object hide_name_regexes, IEnumerable<string> trim_name_regexes)
Regular expressions used to select profiler nodes to display. After 'with_accounted_types' is evaluated, 'with_node_names' are
evaluated as follows: For a profile data structure, profiler first finds the profiler
nodes matching 'start_name_regexes', and starts displaying profiler
nodes from there. Then, if a node matches 'show_name_regexes' and
doesn't match 'hide_name_regexes', it's displayed. If a node matches
'trim_name_regexes', profiler stops further searching that branch.
Parameters
-
object
start_name_regexes - list of node name regexes to start displaying.
-
IEnumerable<string>
show_name_regexes - list of node names regexes to display.
-
object
hide_name_regexes - list of node_names regexes that should be hidden.
-
IEnumerable<string>
trim_name_regexes - list of node name regexes from where to stop.
Returns
-
ProfileOptionBuilder
- self
object with_node_names_dyn(object start_name_regexes, object show_name_regexes, object hide_name_regexes, object trim_name_regexes)
Regular expressions used to select profiler nodes to display. After 'with_accounted_types' is evaluated, 'with_node_names' are
evaluated as follows: For a profile data structure, profiler first finds the profiler
nodes matching 'start_name_regexes', and starts displaying profiler
nodes from there. Then, if a node matches 'show_name_regexes' and
doesn't match 'hide_name_regexes', it's displayed. If a node matches
'trim_name_regexes', profiler stops further searching that branch.
Parameters
-
object
start_name_regexes - list of node name regexes to start displaying.
-
object
show_name_regexes - list of node names regexes to display.
-
object
hide_name_regexes - list of node_names regexes that should be hidden.
-
object
trim_name_regexes - list of node name regexes from where to stop.
Returns
-
object
- self
ProfileOptionBuilder with_pprof_output(object pprof_file)
Generate a pprof profile gzip file. To use the pprof file:
pprof -png --nodecount=100 --sample_index=1
Parameters
-
object
pprof_file - filename for output, usually suffixed with.pb.gz.
Returns
-
ProfileOptionBuilder
- self.
object with_pprof_output_dyn(object pprof_file)
Generate a pprof profile gzip file. To use the pprof file:
pprof -png --nodecount=100 --sample_index=1
Parameters
-
object
pprof_file - filename for output, usually suffixed with.pb.gz.
Returns
-
object
- self.
ProfileOptionBuilder with_stdout_output()
Print the result to stdout.
object with_stdout_output_dyn()
Print the result to stdout.
ProfileOptionBuilder with_step(int step)
Which profile step to use for profiling. The 'step' here refers to the step defined by `Profiler.add_step()` API.
Parameters
-
int
step - When multiple steps of profiles are available, select which step's profile to use. If -1, use average of all available steps.
Returns
-
ProfileOptionBuilder
- self
object with_step_dyn(object step)
Which profile step to use for profiling. The 'step' here refers to the step defined by `Profiler.add_step()` API.
Parameters
-
object
step - When multiple steps of profiles are available, select which step's profile to use. If -1, use average of all available steps.
Returns
-
object
- self
ProfileOptionBuilder with_timeline_output(object timeline_file)
Generate a timeline json file.
object with_timeline_output_dyn(object timeline_file)
Generate a timeline json file.
Public static methods
IDictionary<string, object> float_operation()
Options used to profile float operations. Please see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/profile_model_architecture.md
on the caveats of calculating float operations.
Returns
-
IDictionary<string, object>
- A dict of profiling options.
object float_operation_dyn()
Options used to profile float operations. Please see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/profile_model_architecture.md
on the caveats of calculating float operations.
Returns
-
object
- A dict of profiling options.
IDictionary<object, object> time_and_memory(int min_micros, int min_bytes, int min_accelerator_micros, int min_cpu_micros, int min_peak_bytes, int min_residual_bytes, int min_output_bytes)
Show operation time and memory consumptions.
Parameters
-
int
min_micros - Only show profiler nodes with execution time no less than this. It sums accelerator and cpu times.
-
int
min_bytes - Only show profiler nodes requested to allocate no less bytes than this.
-
int
min_accelerator_micros - Only show profiler nodes spend no less than this time on accelerator (e.g. GPU).
-
int
min_cpu_micros - Only show profiler nodes spend no less than this time on cpu.
-
int
min_peak_bytes - Only show profiler nodes using no less than this bytes at peak (high watermark). For profiler nodes consist of multiple graph nodes, it sums the graph nodes' peak_bytes.
-
int
min_residual_bytes - Only show profiler nodes have no less than this bytes not being de-allocated after Compute() ends. For profiler nodes consist of multiple graph nodes, it sums the graph nodes' residual_bytes.
-
int
min_output_bytes - Only show profiler nodes have no less than this bytes output. The output are not necessarily allocated by this profiler nodes.
Returns
-
IDictionary<object, object>
- A dict of profiling options.
object time_and_memory_dyn(ImplicitContainer<T> min_micros, ImplicitContainer<T> min_bytes, ImplicitContainer<T> min_accelerator_micros, ImplicitContainer<T> min_cpu_micros, ImplicitContainer<T> min_peak_bytes, ImplicitContainer<T> min_residual_bytes, ImplicitContainer<T> min_output_bytes)
Show operation time and memory consumptions.
Parameters
-
ImplicitContainer<T>
min_micros - Only show profiler nodes with execution time no less than this. It sums accelerator and cpu times.
-
ImplicitContainer<T>
min_bytes - Only show profiler nodes requested to allocate no less bytes than this.
-
ImplicitContainer<T>
min_accelerator_micros - Only show profiler nodes spend no less than this time on accelerator (e.g. GPU).
-
ImplicitContainer<T>
min_cpu_micros - Only show profiler nodes spend no less than this time on cpu.
-
ImplicitContainer<T>
min_peak_bytes - Only show profiler nodes using no less than this bytes at peak (high watermark). For profiler nodes consist of multiple graph nodes, it sums the graph nodes' peak_bytes.
-
ImplicitContainer<T>
min_residual_bytes - Only show profiler nodes have no less than this bytes not being de-allocated after Compute() ends. For profiler nodes consist of multiple graph nodes, it sums the graph nodes' residual_bytes.
-
ImplicitContainer<T>
min_output_bytes - Only show profiler nodes have no less than this bytes output. The output are not necessarily allocated by this profiler nodes.
Returns
-
object
- A dict of profiling options.
IDictionary<string, object> trainable_variables_parameter()
Options used to profile trainable variable parameters. Normally used together with 'scope' view.
Returns
-
IDictionary<string, object>
- A dict of profiling options.
object trainable_variables_parameter_dyn()
Options used to profile trainable variable parameters. Normally used together with 'scope' view.
Returns
-
object
- A dict of profiling options.