Type gen_stateless_random_ops
Namespace tensorflow.python.ops.gen_stateless_random_ops
Methods
- stateless_multinomial
- stateless_multinomial
- stateless_multinomial_dyn
- stateless_multinomial_eager_fallback
- stateless_multinomial_eager_fallback
- stateless_multinomial_eager_fallback_dyn
- stateless_random_normal
- stateless_random_normal_dyn
- stateless_random_normal_eager_fallback
- stateless_random_normal_eager_fallback_dyn
- stateless_random_uniform
- stateless_random_uniform_dyn
- stateless_random_uniform_eager_fallback
- stateless_random_uniform_eager_fallback_dyn
- stateless_random_uniform_int
- stateless_random_uniform_int
- stateless_random_uniform_int_dyn
- stateless_random_uniform_int_eager_fallback
- stateless_random_uniform_int_eager_fallback_dyn
- stateless_truncated_normal
- stateless_truncated_normal_dyn
- stateless_truncated_normal_eager_fallback
- stateless_truncated_normal_eager_fallback_dyn
Properties
- stateless_multinomial_eager_fallback_fn
- stateless_multinomial_fn
- stateless_random_normal_eager_fallback_fn
- stateless_random_normal_fn
- stateless_random_uniform_eager_fallback_fn
- stateless_random_uniform_fn
- stateless_random_uniform_int_eager_fallback_fn
- stateless_random_uniform_int_fn
- stateless_truncated_normal_eager_fallback_fn
- stateless_truncated_normal_fn
Public static methods
Tensor stateless_multinomial(IGraphNodeBase logits, IGraphNodeBase num_samples, IGraphNodeBase seed, ImplicitContainer<T> output_dtype, string name)
Tensor stateless_multinomial(IGraphNodeBase logits, IGraphNodeBase num_samples, IGraphNodeBase seed, PythonClassContainer output_dtype, string name)
object stateless_multinomial_dyn(object logits, object num_samples, object seed, ImplicitContainer<T> output_dtype, object name)
Draws deterministic pseudorandom samples from a multinomial distribution. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use
tf.random.stateless_categorical
instead. This is a stateless version of tf.random.categorical
: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware. Example:
Parameters
-
object
logits - 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log-probabilities for all classes.
-
object
num_samples - 0-D. Number of independent samples to draw for each row slice.
-
object
seed - A shape [2] integer Tensor of seeds to the random number generator.
-
ImplicitContainer<T>
output_dtype - integer type to use for the output. Defaults to int64.
-
object
name - Optional name for the operation.
Returns
-
object
- The drawn samples of shape `[batch_size, num_samples]`.
Show Example
# samples has shape [1, 5], where each value is either 0 or 1 with equal # probability. samples = tf.random.stateless_categorical( tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])