LostTech.TensorFlow : API Documentation

Type init_ops_v2

Namespace tensorflow.python.ops.init_ops_v2

Public static methods

VarianceScaling he_normal(Nullable<int> seed)

He normal initializer.

It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given by `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
Nullable<int> seed
A Python integer. Used to seed the random generator.
Returns
VarianceScaling
An initializer.

References: [He et al., 2015] (https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf))

object he_normal_dyn(object seed)

He normal initializer.

It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given by `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
object seed
A Python integer. Used to seed the random generator.
Returns
object
An initializer.

References: [He et al., 2015] (https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf))

VarianceScaling he_uniform(Nullable<int> seed)

He uniform variance scaling initializer.

It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
Nullable<int> seed
A Python integer. Used to seed the random generator.
Returns
VarianceScaling
An initializer.

References: [He et al., 2015] (https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf))

object he_uniform_dyn(object seed)

He uniform variance scaling initializer.

It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
object seed
A Python integer. Used to seed the random generator.
Returns
object
An initializer.

References: [He et al., 2015] (https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf))

VarianceScaling lecun_normal(Nullable<int> seed)

LeCun normal initializer.

It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given by `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
Nullable<int> seed
A Python integer. Used to seed the random generator.
Returns
VarianceScaling
An initializer.

References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) # pylint: disable=line-too-long ([pdf](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)

object lecun_normal_dyn(object seed)

LeCun normal initializer.

It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given by `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
object seed
A Python integer. Used to seed the random generator.
Returns
object
An initializer.

References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) # pylint: disable=line-too-long ([pdf](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)

VarianceScaling lecun_uniform(Nullable<int> seed)

LeCun uniform initializer.

It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(3 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
Nullable<int> seed
A Python integer. Used to seed the random generator.
Returns
VarianceScaling
An initializer.

References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) # pylint: disable=line-too-long ([pdf](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)

object lecun_uniform_dyn(object seed)

LeCun uniform initializer.

It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(3 / fan_in)` where `fan_in` is the number of input units in the weight tensor.
Parameters
object seed
A Python integer. Used to seed the random generator.
Returns
object
An initializer.

References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) # pylint: disable=line-too-long ([pdf](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)

Public properties

PythonFunctionContainer _RandomGenerator_fn get;

PythonFunctionContainer Constant_fn get;

PythonFunctionContainer GlorotNormal_fn get;

PythonFunctionContainer GlorotUniform_fn get;

PythonFunctionContainer he_normal_fn get;

PythonFunctionContainer he_uniform_fn get;

PythonFunctionContainer Identity_fn get;

PythonFunctionContainer Initializer_fn get;

PythonFunctionContainer lecun_normal_fn get;

PythonFunctionContainer lecun_uniform_fn get;

PythonClassContainer normal get; set;

object normal_dyn get; set;

PythonClassContainer one get; set;

object one_dyn get; set;

PythonClassContainer ones get; set;

object ones_dyn get; set;

PythonFunctionContainer Orthogonal_fn get;

PythonClassContainer random_normal get; set;

object random_normal_dyn get; set;

PythonClassContainer random_uniform get; set;

object random_uniform_dyn get; set;

PythonFunctionContainer RandomNormal_fn get;

PythonFunctionContainer RandomUniform_fn get;

PythonFunctionContainer TruncatedNormal_fn get;

PythonClassContainer uniform get; set;

object uniform_dyn get; set;

PythonFunctionContainer VarianceScaling_fn get;

PythonClassContainer zero get; set;

object zero_dyn get; set;

PythonClassContainer zeros get; set;

object zeros_dyn get; set;

PythonFunctionContainer Zeros_fn get;