Type ARModel
Namespace tensorflow_estimator.python.estimator.canned.timeseries.ar_model
Parent TimeSeriesModel
Interfaces IARModel
Methods
- loss_op
- loss_op_dyn
- NewDyn
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops
- prediction_ops_dyn
- random_model_parameters
- random_model_parameters_dyn
Properties
- dtype
- exogenous_feature_columns
- exogenous_feature_columns_dyn
- exogenous_size
- input_window_size
- loss
- NORMAL_LIKELIHOOD_LOSS_dyn
- num_features
- output_window_size
- PythonObject
- SQUARED_LOSS_dyn
- window_size
Fields
Public instance methods
Tensor loss_op(IGraphNodeBase targets, IDictionary<string, object> prediction_ops)
Create loss_op.
object loss_op_dyn(object targets, object prediction_ops)
Create loss_op.
object prediction_ops(IEnumerable<PythonClassContainer> times, int values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
IEnumerable<PythonClassContainer>
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
int
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(IEnumerable<PythonClassContainer> times, PythonClassContainer values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
IEnumerable<PythonClassContainer>
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
PythonClassContainer
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(IndexedSlices times, int values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
IndexedSlices
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
int
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(IndexedSlices times, PythonClassContainer values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
IndexedSlices
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
PythonClassContainer
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(int times, int values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
int
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
int
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(int times, PythonClassContainer values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
int
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
PythonClassContainer
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(IGraphNodeBase times, int values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
IGraphNodeBase
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
int
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(IGraphNodeBase times, PythonClassContainer values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
IGraphNodeBase
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
PythonClassContainer
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(PythonClassContainer times, int values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
PythonClassContainer
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
int
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops(PythonClassContainer times, PythonClassContainer values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
PythonClassContainer
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
PythonClassContainer
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
object prediction_ops_dyn(object times, object values, object exogenous_regressors)
Compute model predictions given input data.
Parameters
-
object
times - A [batch size, self.window_size] integer Tensor, the first self.input_window_size times in each part of the batch indicating input features, and the last self.output_window_size times indicating prediction times.
-
object
values - A [batch size, self.input_window_size, self.num_features] Tensor with input features.
-
object
exogenous_regressors - A [batch size, self.window_size, self.exogenous_size] Tensor with exogenous features.
Returns
-
object
- Tuple (predicted_mean, predicted_covariance), where each element is a Tensor with shape [batch size, self.output_window_size, self.num_features].
void random_model_parameters(object seed)
object random_model_parameters_dyn(object seed)
Public static methods
ARModel NewDyn(object periodicities, object input_window_size, object output_window_size, object num_features, ImplicitContainer<T> prediction_model_factory, ImplicitContainer<T> num_time_buckets, ImplicitContainer<T> loss, object exogenous_feature_columns)
Constructs an auto-regressive model.
Parameters
-
object
periodicities - periodicities of the input data, in the same units as the time feature (for example 24 if feeding hourly data with a daily periodicity, or 60 * 24 if feeding minute-level data with daily periodicity). Note this can be a single value or a list of values for multiple periodicities.
-
object
input_window_size - Number of past time steps of data to look at when doing the regression.
-
object
output_window_size - Number of future time steps to predict. Note that setting it to > 1 empirically seems to give a better fit.
-
object
num_features - number of input features per time step.
-
ImplicitContainer<T>
prediction_model_factory - A callable taking arguments `num_features`,
`input_window_size`, and `output_window_size` and returning a
tf.keras.Model
. The `Model`'s `call()` takes two arguments: an input window and an output window, and returns a dictionary of predictions. See `FlatPredictionModel` for an example. Example usage: ```python model = ar_model.ARModel( periodicities=2, num_features=3, prediction_model_factory=functools.partial( FlatPredictionModel, hidden_layer_sizes=[10, 10])) ``` The default model computes predictions as a linear function of flattened input and output windows. -
ImplicitContainer<T>
num_time_buckets - Number of buckets into which to divide (time % periodicity). This value multiplied by the number of periodicities is the number of time features added to the model.
-
ImplicitContainer<T>
loss - Loss function to use for training. Currently supported values are SQUARED_LOSS and NORMAL_LIKELIHOOD_LOSS. Note that for NORMAL_LIKELIHOOD_LOSS, we train the covariance term as well. For SQUARED_LOSS, the evaluation loss is reported based on un-scaled observations and predictions, while the training loss is computed on normalized data (if input statistics are available).
-
object
exogenous_feature_columns - A list of
tf.feature_column
s (for exampletf.feature_column.embedding_column
) corresponding to features which provide extra information to the model but are not part of the series to be predicted.
Public properties
DType dtype get; set;
IList<object> exogenous_feature_columns get;
object exogenous_feature_columns_dyn get;
Nullable<int> exogenous_size get; set;
object input_window_size get; set;
string loss get; set;
object NORMAL_LIKELIHOOD_LOSS_dyn get; set;
object num_features get; set;
object output_window_size get; set;
object PythonObject get;
object SQUARED_LOSS_dyn get; set;
object window_size get; set;
Public fields
string SQUARED_LOSS
return string
|
string NORMAL_LIKELIHOOD_LOSS
return string
|