Type CoupledInputForgetGateLSTMCell
Namespace tensorflow.contrib.rnn
Parent RNNCell
Interfaces ICoupledInputForgetGateLSTMCell
Long short-term memory unit (LSTM) recurrent network cell. The default non-peephole implementation is based on: https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf Felix Gers, Jurgen Schmidhuber, and Fred Cummins.
"Learning to forget: Continual prediction with LSTM." IET, 850-855, 1999. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays.
"Long short-term memory recurrent neural network architectures for
large scale acoustic modeling." INTERSPEECH, 2014. The coupling of input and forget gate is based on: http://arxiv.org/pdf/1503.04069.pdf Greff et al. "LSTM: A Search Space Odyssey" The class uses optional peep-hole connections, and an optional projection
layer.
Layer normalization implementation is based on: https://arxiv.org/abs/1607.06450. "Layer Normalization"
Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton and is applied before the internal nonlinearities.
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- graph
- graph_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- output_size
- output_size_dyn
- PythonObject
- rnncell_scope
- scope_name
- scope_name_dyn
- state_size
- state_size_dyn
- stateful
- submodules
- submodules_dyn
- supports_masking
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public static methods
CoupledInputForgetGateLSTMCell NewDyn(object num_units, ImplicitContainer<T> use_peepholes, object initializer, object num_proj, object proj_clip, ImplicitContainer<T> num_unit_shards, ImplicitContainer<T> num_proj_shards, ImplicitContainer<T> forget_bias, ImplicitContainer<T> state_is_tuple, ImplicitContainer<T> activation, object reuse, ImplicitContainer<T> layer_norm, ImplicitContainer<T> norm_gain, ImplicitContainer<T> norm_shift)
Initialize the parameters for an LSTM cell.
Parameters
-
object
num_units - int, The number of units in the LSTM cell
-
ImplicitContainer<T>
use_peepholes - bool, set True to enable diagonal/peephole connections.
-
object
initializer - (optional) The initializer to use for the weight and projection matrices.
-
object
num_proj - (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed.
-
object
proj_clip - (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`.
-
ImplicitContainer<T>
num_unit_shards - How to split the weight matrix. If >1, the weight matrix is stored across num_unit_shards.
-
ImplicitContainer<T>
num_proj_shards - How to split the projection matrix. If >1, the projection matrix is stored across num_proj_shards.
-
ImplicitContainer<T>
forget_bias - Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training.
-
ImplicitContainer<T>
state_is_tuple - If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. By default (False), they are concatenated along the column axis. This default behavior will soon be deprecated.
-
ImplicitContainer<T>
activation - Activation function of the inner states.
-
object
reuse - (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised.
-
ImplicitContainer<T>
layer_norm - If `True`, layer normalization will be applied.
-
ImplicitContainer<T>
norm_gain - float, The layer normalization gain initial value. If `layer_norm` has been set to `False`, this argument will be ignored.
-
ImplicitContainer<T>
norm_shift - float, The layer normalization shift initial value. If `layer_norm` has been set to `False`, this argument will be ignored.
Public properties
PythonFunctionContainer activity_regularizer get; set;
object activity_regularizer_dyn get; set;
bool built get; set;
object dtype get;
object dtype_dyn get;
bool dynamic get;
object dynamic_dyn get;
object graph get;
object graph_dyn get;
IList<Node> inbound_nodes get;
object inbound_nodes_dyn get;
IList<object> input get;
object input_dyn get;
object input_mask get;
object input_mask_dyn get;
IList<object> input_shape get;
object input_shape_dyn get;
object input_spec get; set;
object input_spec_dyn get; set;
IList<object> losses get;
object losses_dyn get;
IList<object> metrics get;
object metrics_dyn get;
object name get;
object name_dyn get;
object name_scope get;
object name_scope_dyn get;
IList<object> non_trainable_variables get;
object non_trainable_variables_dyn get;
IList<object> non_trainable_weights get;
object non_trainable_weights_dyn get;
IList<object> outbound_nodes get;
object outbound_nodes_dyn get;
IList<object> output get;
object output_dyn get;
object output_mask get;
object output_mask_dyn get;
object output_shape get;
object output_shape_dyn get;
object output_size get;
Integer or TensorShape: size of outputs produced by this cell.
object output_size_dyn get;
Integer or TensorShape: size of outputs produced by this cell.
object PythonObject get;
object rnncell_scope get; set;
string scope_name get;
object scope_name_dyn get;
object state_size get;
size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
object state_size_dyn get;
size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.