Type GridLSTMCell
Namespace tensorflow.contrib.rnn
Parent RNNCell
Interfaces IGridLSTMCell
Grid Long short-term memory unit (LSTM) recurrent network cell. The default is based on:
Nal Kalchbrenner, Ivo Danihelka and Alex Graves
"Grid Long Short-Term Memory," Proc. ICLR 2016.
http://arxiv.org/abs/1507.01526 When peephole connections are used, the implementation is based on:
Tara N. Sainath and Bo Li
"Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures
for LVCSR Tasks." submitted to INTERSPEECH, 2016. The code uses optional peephole connections, shared_weights and cell clipping.
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- graph
- graph_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- output_size
- output_size_dyn
- PythonObject
- rnncell_scope
- scope_name
- scope_name_dyn
- state_size
- state_size_dyn
- state_tuple_type
- state_tuple_type_dyn
- stateful
- submodules
- submodules_dyn
- supports_masking
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public static methods
GridLSTMCell NewDyn(object num_units, ImplicitContainer<T> use_peepholes, ImplicitContainer<T> share_time_frequency_weights, object cell_clip, object initializer, ImplicitContainer<T> num_unit_shards, ImplicitContainer<T> forget_bias, object feature_size, object frequency_skip, object num_frequency_blocks, object start_freqindex_list, object end_freqindex_list, ImplicitContainer<T> couple_input_forget_gates, ImplicitContainer<T> state_is_tuple, object reuse)
Initialize the parameters for an LSTM cell.
Parameters
-
object
num_units - int, The number of units in the LSTM cell
-
ImplicitContainer<T>
use_peepholes - (optional) bool, default False. Set True to enable diagonal/peephole connections.
-
ImplicitContainer<T>
share_time_frequency_weights - (optional) bool, default False. Set True to enable shared cell weights between time and frequency LSTMs.
-
object
cell_clip - (optional) A float value, default None, if provided the cell state is clipped by this value prior to the cell output activation.
-
object
initializer - (optional) The initializer to use for the weight and projection matrices, default None.
-
ImplicitContainer<T>
num_unit_shards - (optional) int, default 1, How to split the weight matrix. If > 1, the weight matrix is stored across num_unit_shards.
-
ImplicitContainer<T>
forget_bias - (optional) float, default 1.0, The initial bias of the forget gates, used to reduce the scale of forgetting at the beginning of the training.
-
object
feature_size - (optional) int, default None, The size of the input feature the LSTM spans over.
-
object
frequency_skip - (optional) int, default None, The amount the LSTM filter is shifted by in frequency.
-
object
num_frequency_blocks - [required] A list of frequency blocks needed to cover the whole input feature splitting defined by start_freqindex_list and end_freqindex_list.
-
object
start_freqindex_list - [optional], list of ints, default None, The starting frequency index for each frequency block.
-
object
end_freqindex_list - [optional], list of ints, default None. The ending frequency index for each frequency block.
-
ImplicitContainer<T>
couple_input_forget_gates - (optional) bool, default False, Whether to couple the input and forget gates, i.e. f_gate = 1.0 - i_gate, to reduce model parameters and computation cost.
-
ImplicitContainer<T>
state_is_tuple -
object
reuse - (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised.
Public properties
PythonFunctionContainer activity_regularizer get; set;
object activity_regularizer_dyn get; set;
bool built get; set;
object dtype get;
object dtype_dyn get;
bool dynamic get;
object dynamic_dyn get;
object graph get;
object graph_dyn get;
IList<Node> inbound_nodes get;
object inbound_nodes_dyn get;
IList<object> input get;
object input_dyn get;
object input_mask get;
object input_mask_dyn get;
IList<object> input_shape get;
object input_shape_dyn get;
object input_spec get; set;
object input_spec_dyn get; set;
IList<object> losses get;
object losses_dyn get;
IList<object> metrics get;
object metrics_dyn get;
object name get;
object name_dyn get;
object name_scope get;
object name_scope_dyn get;
IList<object> non_trainable_variables get;
object non_trainable_variables_dyn get;
IList<object> non_trainable_weights get;
object non_trainable_weights_dyn get;
IList<object> outbound_nodes get;
object outbound_nodes_dyn get;
IList<object> output get;
object output_dyn get;
object output_mask get;
object output_mask_dyn get;
object output_shape get;
object output_shape_dyn get;
object output_size get;
Integer or TensorShape: size of outputs produced by this cell.
object output_size_dyn get;
Integer or TensorShape: size of outputs produced by this cell.
object PythonObject get;
object rnncell_scope get; set;
string scope_name get;
object scope_name_dyn get;
object state_size get;
size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
object state_size_dyn get;
size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.