Type slim
Namespace tensorflow.contrib.slim
Methods
- adaptive_clipping_fn
- adaptive_clipping_fn_dyn
- add_arg_scope
- add_arg_scope_dyn
- add_model_variable
- add_model_variable_dyn
- apply_regularization
- apply_regularization_dyn
- arg_scope_
- arg_scope_
- arg_scope__dyn
- arg_scope_func_key
- arg_scope_func_key_dyn
- arg_scoped_arguments
- arg_scoped_arguments_dyn
- assert_global_step
- assert_global_step_dyn
- assert_or_get_global_step
- assert_or_get_global_step_dyn
- assign_from_checkpoint
- assign_from_checkpoint
- assign_from_checkpoint
- assign_from_checkpoint
- assign_from_checkpoint_dyn
- assign_from_checkpoint_fn
- assign_from_checkpoint_fn
- assign_from_checkpoint_fn
- assign_from_checkpoint_fn
- assign_from_checkpoint_fn_dyn
- assign_from_values
- assign_from_values_dyn
- assign_from_values_fn
- assign_from_values_fn_dyn
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d
- avg_pool2d_dyn
- avg_pool3d
- avg_pool3d
- avg_pool3d
- avg_pool3d
- avg_pool3d_dyn
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm
- batch_norm_dyn
- bias_add
- bias_add_dyn
- binary_svm_target
- binary_svm_target_dyn
- bow_encoder
- bow_encoder
- bow_encoder_dyn
- bucketize
- bucketize_dyn
- bucketized_column
- bucketized_column
- bucketized_column_dyn
- check_feature_columns
- check_feature_columns
- check_feature_columns
- check_feature_columns_dyn
- convolution
- convolution
- convolution
- convolution
- convolution_dyn
- convolution1d
- convolution1d_dyn
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d
- convolution2d_dyn
- convolution2d_in_plane
- convolution2d_in_plane_dyn
- convolution2d_transpose
- convolution2d_transpose_dyn
- convolution3d
- convolution3d_dyn
- convolution3d_transpose
- convolution3d_transpose_dyn
- create_feature_spec_for_parsing
- create_feature_spec_for_parsing
- create_feature_spec_for_parsing
- create_feature_spec_for_parsing_dyn
- create_global_step
- create_global_step_dyn
- crossed_column
- crossed_column_dyn
- current_arg_scope
- current_arg_scope_dyn
- dense_to_sparse
- dense_to_sparse_dyn
- dropout
- dropout
- dropout
- dropout
- dropout
- dropout
- dropout
- dropout
- dropout_dyn
- embed_sequence
- embed_sequence_dyn
- embedding_column
- embedding_column_dyn
- embedding_lookup_sparse_with_distributed_aggregation
- embedding_lookup_sparse_with_distributed_aggregation
- embedding_lookup_sparse_with_distributed_aggregation_dyn
- embedding_lookup_unique
- embedding_lookup_unique
- embedding_lookup_unique
- embedding_lookup_unique_dyn
- filter_variables
- filter_variables_dyn
- flatten
- flatten
- flatten_dyn
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected
- fully_connected_dyn
- gdn
- gdn_dyn
- get_default_binary_metrics_for_eval
- get_default_binary_metrics_for_eval_dyn
- get_global_step
- get_global_step_dyn
- get_local_variables
- get_local_variables_dyn
- get_model_variables
- get_model_variables_dyn
- get_or_create_global_step
- get_or_create_global_step_dyn
- get_trainable_variables
- get_trainable_variables_dyn
- get_unique_variable
- get_unique_variable_dyn
- get_variable_full_name
- get_variable_full_name
- get_variable_full_name
- get_variable_full_name
- get_variable_full_name_dyn
- get_variables
- get_variables
- get_variables_by_name
- get_variables_by_name_dyn
- get_variables_by_suffix
- get_variables_by_suffix_dyn
- get_variables_dyn
- get_variables_to_restore
- get_variables_to_restore_dyn
- global_variable
- global_variable
- global_variable_dyn
- group_norm
- group_norm_dyn
- has_arg_scope
- has_arg_scope_dyn
- images_to_sequence
- images_to_sequence_dyn
- infer_real_valued_columns
- infer_real_valued_columns
- infer_real_valued_columns_dyn
- input_from_feature_columns
- input_from_feature_columns
- input_from_feature_columns_dyn
- instance_norm
- instance_norm_dyn
- joint_weighted_sum_from_feature_columns
- joint_weighted_sum_from_feature_columns
- joint_weighted_sum_from_feature_columns
- joint_weighted_sum_from_feature_columns_dyn
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer
- l1_l2_regularizer_dyn
- l1_regularizer
- l1_regularizer
- l1_regularizer
- l1_regularizer_dyn
- l2_regularizer
- l2_regularizer
- l2_regularizer
- l2_regularizer_dyn
- layer_norm
- layer_norm_dyn
- legacy_fully_connected
- legacy_fully_connected_dyn
- local_variable
- local_variable
- local_variable
- local_variable
- local_variable_dyn
- make_place_holder_tensors_for_base_features
- make_place_holder_tensors_for_base_features_dyn
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d
- max_pool2d_dyn
- max_pool3d
- max_pool3d
- max_pool3d
- max_pool3d
- max_pool3d_dyn
- maxout
- maxout_dyn
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable
- model_variable_dyn
- multi_class_target
- multi_class_target_dyn
- one_hot_column
- one_hot_column_dyn
- one_hot_encoding
- one_hot_encoding
- one_hot_encoding_dyn
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss
- optimize_loss_dyn
- parse_feature_columns_from_examples
- parse_feature_columns_from_examples
- parse_feature_columns_from_examples_dyn
- parse_feature_columns_from_sequence_examples
- parse_feature_columns_from_sequence_examples_dyn
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool
- pool_dyn
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column
- real_valued_column_dyn
- recompute_grad
- recompute_grad_dyn
- regression_target
- regression_target_dyn
- repeat
- repeat
- repeat_dyn
- repeat_dyn
- rev_block
- rev_block
- rev_block_dyn
- safe_embedding_lookup_sparse
- safe_embedding_lookup_sparse
- safe_embedding_lookup_sparse
- safe_embedding_lookup_sparse
- safe_embedding_lookup_sparse_dyn
- scale_gradient
- scale_gradient_dyn
- scattered_embedding_column
- scattered_embedding_column_dyn
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup
- scattered_embedding_lookup_dyn
- scattered_embedding_lookup_sparse
- scattered_embedding_lookup_sparse
- scattered_embedding_lookup_sparse
- scattered_embedding_lookup_sparse_dyn
- separable_convolution2d
- separable_convolution2d
- separable_convolution2d
- separable_convolution2d
- separable_convolution2d_dyn
- sequence_input_from_feature_columns
- sequence_input_from_feature_columns_dyn
- sequence_to_images
- sequence_to_images_dyn
- shared_embedding_columns
- shared_embedding_columns
- shared_embedding_columns
- shared_embedding_columns_dyn
- softmax
- softmax
- softmax
- softmax
- softmax_dyn
- sparse_column_with_hash_bucket
- sparse_column_with_hash_bucket
- sparse_column_with_hash_bucket
- sparse_column_with_hash_bucket
- sparse_column_with_hash_bucket_dyn
- sparse_column_with_integerized_feature
- sparse_column_with_integerized_feature_dyn
- sparse_column_with_keys
- sparse_column_with_keys_dyn
- sparse_column_with_vocabulary_file
- sparse_column_with_vocabulary_file_dyn
- sparse_feature_cross
- sparse_feature_cross
- sparse_feature_cross_dyn
- spatial_softmax
- spatial_softmax_dyn
- stack
- stack_dyn
- sum_regularizer
- sum_regularizer_dyn
- summarize_activation
- summarize_activation_dyn
- summarize_activations
- summarize_activations_dyn
- summarize_collection
- summarize_collection_dyn
- summarize_tensor
- summarize_tensor_dyn
- summarize_tensors
- summarize_tensors_dyn
- transform_features
- transform_features
- transform_features_dyn
- unit_norm
- unit_norm
- unit_norm_dyn
- variable
- variable
- variable
- variable
- variable
- variable
- variable
- variable
- variable
- variable
- variable_dyn
- variance_scaling_initializer
- variance_scaling_initializer_dyn
- weighted_sparse_column
- weighted_sparse_column_dyn
- weighted_sum_from_feature_columns
- weighted_sum_from_feature_columns
- weighted_sum_from_feature_columns
- weighted_sum_from_feature_columns_dyn
- xavier_initializer
- xavier_initializer_dyn
- zero_initializer
- zero_initializer_dyn
Properties
- _BinarySvmTargetColumn_fn
- _BucketizedColumn_fn
- _CrossedColumn_fn
- _DeepEmbeddingLookupArguments_fn
- _EmbeddingColumn_fn
- _FeatureColumn_fn
- _LazyBuilderByColumnsToTensor_fn
- _LinearEmbeddingLookupArguments_fn
- _MetricKeys_fn
- _MultiClassTargetColumn_fn
- _OneHotColumn_fn
- _RealValuedColumn_fn
- _RealValuedVarLenColumn_fn
- _RegressionTargetColumn_fn
- _ScatteredEmbeddingColumn_fn
- _SparseColumn_fn
- _SparseColumnHashed_fn
- _SparseColumnIntegerized_fn
- _SparseColumnKeys_fn
- _SparseColumnVocabulary_fn
- _SparseIdLookupConfig_fn
- _TargetColumn_fn
- _Transformer_fn
- _WeightedSparseColumn_fn
- adaptive_clipping_fn_fn
- add_arg_scope_fn
- add_model_variable_fn
- apply_regularization_fn
- arg_scope__fn
- arg_scope_func_key_fn
- arg_scoped_arguments_fn
- assert_global_step_fn
- assert_or_get_global_step_fn
- assign_from_checkpoint_fn_
- assign_from_checkpoint_fn_fn
- assign_from_values_fn_
- assign_from_values_fn_fn
- avg_pool2d_fn
- avg_pool3d_fn
- batch_norm_fn
- bias_add_fn
- binary_svm_target_fn
- bow_encoder_fn
- bucketize_fn
- bucketized_column_fn
- check_feature_columns_fn
- convolution_fn
- convolution1d_fn
- convolution2d_fn
- convolution2d_in_plane_fn
- convolution2d_transpose_fn
- convolution3d_fn
- convolution3d_transpose_fn
- create_feature_spec_for_parsing_fn
- create_global_step_fn
- crossed_column_fn
- current_arg_scope_fn
- DataFrameColumn_fn
- dense_to_sparse_fn
- dropout_fn
- elu
- elu_dyn
- embed_sequence_fn
- embedding_column_fn
- embedding_lookup_sparse_with_distributed_aggregation_fn
- embedding_lookup_unique_fn
- filter_variables_fn
- flatten_fn
- fully_connected_fn
- gdn_fn
- GDN_fn
- get_default_binary_metrics_for_eval_fn
- get_global_step_fn
- get_local_variables_fn
- get_model_variables_fn
- get_or_create_global_step_fn
- get_trainable_variables_fn
- get_unique_variable_fn
- get_variable_full_name_fn
- get_variables_by_name_fn
- get_variables_by_suffix_fn
- get_variables_fn
- get_variables_to_restore_fn
- global_variable_fn
- group_norm_fn
- has_arg_scope_fn
- images_to_sequence_fn
- infer_real_valued_columns_fn
- input_from_feature_columns_fn
- instance_norm_fn
- joint_weighted_sum_from_feature_columns_fn
- l1_l2_regularizer_fn
- l1_regularizer_fn
- l2_regularizer_fn
- layer_norm_fn
- LAYER_RE
- LAYER_RE_dyn
- legacy_fully_connected_fn
- legacy_linear
- legacy_linear_dyn
- legacy_relu
- legacy_relu_dyn
- linear
- linear_dyn
- local_variable_fn
- make_place_holder_tensors_for_base_features_fn
- max_pool2d_fn
- max_pool3d_fn
- maxout_fn
- model_variable_fn
- multi_class_target_fn
- one_hot_column_fn
- one_hot_encoding_fn
- optimize_loss_fn
- OPTIMIZER_CLS_NAMES
- OPTIMIZER_CLS_NAMES_dyn
- OPTIMIZER_SUMMARIES
- OPTIMIZER_SUMMARIES_dyn
- parse_feature_columns_from_examples_fn
- parse_feature_columns_from_sequence_examples_fn
- pool_fn
- ProblemType_fn
- real_valued_column_fn
- recompute_grad_fn
- regression_target_fn
- relu
- relu_dyn
- relu6
- relu6_dyn
- repeat_fn
- rev_block_fn
- RevBlock_fn
- safe_embedding_lookup_sparse_fn
- scale_gradient_fn
- scattered_embedding_column_fn
- scattered_embedding_lookup_fn
- scattered_embedding_lookup_sparse_fn
- separable_convolution2d_fn
- sequence_input_from_feature_columns_fn
- sequence_to_images_fn
- shared_embedding_columns_fn
- softmax_fn
- sparse_column_with_hash_bucket_fn
- sparse_column_with_integerized_feature_fn
- sparse_column_with_keys_fn
- sparse_column_with_vocabulary_file_fn
- sparse_feature_cross_fn
- spatial_softmax_fn
- stack_fn
- sum_regularizer_fn
- summarize_activation_fn
- summarize_activations_fn
- summarize_biases
- summarize_biases_dyn
- summarize_collection_fn
- summarize_tensor_fn
- summarize_tensors_fn
- summarize_variables
- summarize_variables_dyn
- summarize_weights
- summarize_weights_dyn
- transform_features_fn
- unit_norm_fn
- variable_fn
- VariableDeviceChooser_fn
- variance_scaling_initializer_fn
- weighted_sparse_column_fn
- weighted_sum_from_feature_columns_fn
- xavier_initializer_fn
- zero_initializer_fn
Fields
Public static methods
object adaptive_clipping_fn(double std_factor, double decay, object static_max_norm, IGraphNodeBase global_step, bool report_summary, double epsilon, string name)
object adaptive_clipping_fn_dyn(ImplicitContainer<T> std_factor, ImplicitContainer<T> decay, object static_max_norm, object global_step, ImplicitContainer<T> report_summary, ImplicitContainer<T> epsilon, object name)
object add_arg_scope(PythonFunctionContainer func)
object add_arg_scope_dyn(object func)
void add_model_variable(object var)
object add_model_variable_dyn(object var)
Tensor apply_regularization(object regularizer, IEnumerable<IGraphNodeBase> weights_list)
object apply_regularization_dyn(object regularizer, object weights_list)
IContextManager<T> arg_scope_(IEnumerable<object> list_ops_or_scope, IDictionary<string, object> kwargs)
IContextManager<T> arg_scope_(IDictionary<object, object> list_ops_or_scope, IDictionary<string, object> kwargs)
object arg_scope__dyn(object list_ops_or_scope, IDictionary<string, object> kwargs)
string arg_scope_func_key(PythonFunctionContainer op)
object arg_scope_func_key_dyn(object op)
object arg_scoped_arguments(object func)
object arg_scoped_arguments_dyn(object func)
void assert_global_step(IGraphNodeBase global_step_tensor)
Asserts `global_step_tensor` is a scalar int `Variable` or `Tensor`.
Parameters
-
IGraphNodeBase
global_step_tensor - `Tensor` to test.
object assert_global_step_dyn(object global_step_tensor)
Asserts `global_step_tensor` is a scalar int `Variable` or `Tensor`.
Parameters
-
object
global_step_tensor - `Tensor` to test.
object assert_or_get_global_step(object graph, object global_step_tensor)
object assert_or_get_global_step_dyn(object graph, object global_step_tensor)
ValueTuple<object, IDictionary<Tensor, object>> assign_from_checkpoint(Byte[] model_path, IDictionary<string, object> var_list, bool ignore_missing_vars)
ValueTuple<object, IDictionary<Tensor, object>> assign_from_checkpoint(string model_path, IDictionary<string, object> var_list, bool ignore_missing_vars)
ValueTuple<object, IDictionary<Tensor, object>> assign_from_checkpoint(string model_path, ValueTuple<object, IEnumerable<object>> var_list, bool ignore_missing_vars)
ValueTuple<object, IDictionary<Tensor, object>> assign_from_checkpoint(Byte[] model_path, ValueTuple<object, IEnumerable<object>> var_list, bool ignore_missing_vars)
object assign_from_checkpoint_dyn(object model_path, object var_list, ImplicitContainer<T> ignore_missing_vars)
object assign_from_checkpoint_fn(string model_path, IEnumerable<PartitionedVariable> var_list, bool ignore_missing_vars, bool reshape_variables)
object assign_from_checkpoint_fn(Byte[] model_path, IDictionary<object, object> var_list, bool ignore_missing_vars, bool reshape_variables)
object assign_from_checkpoint_fn(string model_path, IDictionary<object, object> var_list, bool ignore_missing_vars, bool reshape_variables)
object assign_from_checkpoint_fn(Byte[] model_path, IEnumerable<PartitionedVariable> var_list, bool ignore_missing_vars, bool reshape_variables)
object assign_from_checkpoint_fn_dyn(object model_path, object var_list, ImplicitContainer<T> ignore_missing_vars, ImplicitContainer<T> reshape_variables)
ValueTuple<object, IDictionary<Tensor, object>> assign_from_values(IDictionary<string, object> var_names_to_values)
object assign_from_values_dyn(object var_names_to_values)
object assign_from_values_fn(IDictionary<string, object> var_names_to_values)
object assign_from_values_fn_dyn(object var_names_to_values)
Tensor avg_pool2d(IGraphNodeBase inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool2d(IGraphNodeBase inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<int> scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<object> scope)
Tensor avg_pool2d(IGraphNodeBase inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool2d(IGraphNodeBase inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<int> scope)
Tensor avg_pool2d(IGraphNodeBase inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool2d(IGraphNodeBase inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<int> scope)
Tensor avg_pool2d(IGraphNodeBase inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool2d(IGraphNodeBase inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<int> scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<int> scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<int> scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, IEnumerable<int> scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool2d(IEnumerable<IGraphNodeBase> inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
object avg_pool2d_dyn(object inputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object outputs_collections, object scope)
Tensor avg_pool3d(IGraphNodeBase inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool3d(IGraphNodeBase inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool3d(IGraphNodeBase inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor avg_pool3d(IGraphNodeBase inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
object avg_pool3d_dyn(object inputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object outputs_collections, object scope)
Tensor batch_norm(IGraphNodeBase inputs, IEnumerable<int> decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, Variable is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(IGraphNodeBase inputs, double decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, bool is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, IEnumerable<int> decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, Variable is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, Variable is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(IEnumerable<object> inputs, double decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, Variable is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, IEnumerable<int> decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, bool is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(IGraphNodeBase inputs, double decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, Variable is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, double decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, bool is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, double decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, Variable is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(IGraphNodeBase inputs, IEnumerable<int> decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, bool is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(IEnumerable<object> inputs, double decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, bool is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
Tensor batch_norm(IEnumerable<object> inputs, IEnumerable<int> decay, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, IDictionary<object, object> param_initializers, IDictionary<object, object> param_regularizers, ImplicitContainer<T> updates_collections, bool is_training, Nullable<bool> reuse, IDictionary<string, IEnumerable<object>> variables_collections, object outputs_collections, bool trainable, IGraphNodeBase batch_weights, Nullable<bool> fused, ImplicitContainer<T> data_format, bool zero_debias_moving_mean, string scope, bool renorm, object renorm_clipping, double renorm_decay, object adjustment)
object batch_norm_dyn(object inputs, ImplicitContainer<T> decay, ImplicitContainer<T> center, ImplicitContainer<T> scale, ImplicitContainer<T> epsilon, object activation_fn, object param_initializers, object param_regularizers, ImplicitContainer<T> updates_collections, ImplicitContainer<T> is_training, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object batch_weights, object fused, ImplicitContainer<T> data_format, ImplicitContainer<T> zero_debias_moving_mean, object scope, ImplicitContainer<T> renorm, object renorm_clipping, ImplicitContainer<T> renorm_decay, object adjustment)
Tensor bias_add(IGraphNodeBase inputs, PythonFunctionContainer activation_fn, ImplicitContainer<T> initializer, object regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, ImplicitContainer<T> data_format, object scope)
object bias_add_dyn(object inputs, object activation_fn, ImplicitContainer<T> initializer, object regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, ImplicitContainer<T> data_format, object scope)
_BinarySvmTargetColumn binary_svm_target(object label_name, string weight_column_name)
object binary_svm_target_dyn(object label_name, object weight_column_name)
Tensor bow_encoder(IEnumerable<object> ids, int vocab_size, int embed_dim, bool sparse_lookup, object initializer, object regularizer, bool trainable, string scope, Nullable<bool> reuse)
Tensor bow_encoder(SparseTensor ids, int vocab_size, int embed_dim, bool sparse_lookup, object initializer, object regularizer, bool trainable, string scope, Nullable<bool> reuse)
object bow_encoder_dyn(object ids, object vocab_size, object embed_dim, ImplicitContainer<T> sparse_lookup, object initializer, object regularizer, ImplicitContainer<T> trainable, object scope, object reuse)
Tensor bucketize(IGraphNodeBase input_tensor, IEnumerable<object> boundaries, string name)
object bucketize_dyn(object input_tensor, object boundaries, object name)
_BucketizedColumn bucketized_column(_FeatureColumn source_column, IEnumerable<double> boundaries)
_BucketizedColumn bucketized_column(string source_column, IEnumerable<double> boundaries)
object bucketized_column_dyn(object source_column, object boundaries)
Represents discretized dense input. Buckets include the left boundary, and exclude the right boundary. Namely,
`boundaries=[0., 1., 2.]` generates buckets `(-inf, 0.)`, `[0., 1.)`,
`[1., 2.)`, and `[2., +inf)`. For example, if the inputs are
then the output will be
Example:
`bucketized_column` can also be crossed with another categorical column using
`crossed_column`:
Parameters
-
object
source_column - A one-dimensional dense column which is generated with `numeric_column`.
-
object
boundaries - A sorted list or tuple of floats specifying the boundaries.
Returns
-
object
- A `BucketizedColumn`.
Show Example
boundaries = [0, 10, 100] input tensor = [[-5, 10000] [150, 10] [5, 100]]
void check_feature_columns(IEnumerable<_RealValuedColumn> feature_columns)
void check_feature_columns(IDictionary<object, object> feature_columns)
void check_feature_columns(object feature_columns)
object check_feature_columns_dyn(object feature_columns)
object convolution(IGraphNodeBase inputs, int num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<object, object> normalizer_params, Initializer weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope, Nullable<int> conv_dims)
object convolution(IGraphNodeBase inputs, int num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<object, object> normalizer_params, Initializer weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope, Nullable<int> conv_dims)
object convolution(IGraphNodeBase inputs, int num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<object, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope, Nullable<int> conv_dims)
object convolution(IGraphNodeBase inputs, int num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<object, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope, Nullable<int> conv_dims)
object convolution_dyn(object inputs, object num_outputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, object data_format, ImplicitContainer<T> rate, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope, object conv_dims)
object convolution1d(object inputs, object num_outputs, object kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution1d_dyn(object inputs, object num_outputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, object data_format, ImplicitContainer<T> rate, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
object convolution2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, IEnumerable<int> num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IGraphNodeBase inputs, int num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IEnumerable<IGraphNodeBase> inputs, int num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IGraphNodeBase inputs, IEnumerable<int> num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IGraphNodeBase inputs, IEnumerable<int> num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IndexedSlices inputs, int num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IndexedSlices inputs, IEnumerable<int> num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IndexedSlices inputs, IEnumerable<int> num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, int num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, int num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, IEnumerable<int> num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IEnumerable<IGraphNodeBase> inputs, int num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IndexedSlices inputs, int num_outputs, IEnumerable<int> kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d(IGraphNodeBase inputs, int num_outputs, int kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d_dyn(object inputs, object num_outputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, object data_format, ImplicitContainer<T> rate, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
Tensor convolution2d_in_plane(object inputs, object kernel_size, int stride, string padding, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d_in_plane_dyn(object inputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
object convolution2d_transpose(IGraphNodeBase inputs, int num_outputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution2d_transpose_dyn(object inputs, object num_outputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
object convolution3d(object inputs, object num_outputs, object kernel_size, int stride, string padding, object data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution3d_dyn(object inputs, object num_outputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, object data_format, ImplicitContainer<T> rate, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
object convolution3d_transpose(object inputs, object num_outputs, object kernel_size, int stride, string padding, ImplicitContainer<T> data_format, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, object scope)
object convolution3d_transpose_dyn(object inputs, object num_outputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
IDictionary<object, object> create_feature_spec_for_parsing(IDictionary<object, object> feature_columns)
IDictionary<object, object> create_feature_spec_for_parsing(IEnumerable<_RealValuedColumn> feature_columns)
IDictionary<object, object> create_feature_spec_for_parsing(object feature_columns)
object create_feature_spec_for_parsing_dyn(object feature_columns)
object create_global_step(Graph graph)
Create global step tensor in graph.
Parameters
-
Graph
graph - The graph in which to create the global step tensor. If missing, use default graph.
Returns
-
object
- Global step tensor.
object create_global_step_dyn(object graph)
Create global step tensor in graph.
Parameters
-
object
graph - The graph in which to create the global step tensor. If missing, use default graph.
Returns
-
object
- Global step tensor.
_CrossedColumn crossed_column(IEnumerable<object> columns, int hash_bucket_size, string combiner, object ckpt_to_load_from, string tensor_name_in_ckpt, object hash_key)
object crossed_column_dyn(object columns, object hash_bucket_size, ImplicitContainer<T> combiner, object ckpt_to_load_from, object tensor_name_in_ckpt, object hash_key)
IDictionary<object, object> current_arg_scope()
object current_arg_scope_dyn()
SparseTensor dense_to_sparse(IGraphNodeBase tensor, int eos_token, object outputs_collections, object scope)
object dense_to_sparse_dyn(object tensor, ImplicitContainer<T> eos_token, object outputs_collections, object scope)
object dropout(IGraphNodeBase inputs, double keep_prob, object noise_shape, IGraphNodeBase is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout(IGraphNodeBase inputs, IEnumerable<int> keep_prob, object noise_shape, bool is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout(IGraphNodeBase inputs, IEnumerable<int> keep_prob, object noise_shape, IGraphNodeBase is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout(IGraphNodeBase inputs, double keep_prob, object noise_shape, bool is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> keep_prob, object noise_shape, IGraphNodeBase is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> keep_prob, object noise_shape, bool is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout(IEnumerable<IGraphNodeBase> inputs, double keep_prob, object noise_shape, IGraphNodeBase is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout(IEnumerable<IGraphNodeBase> inputs, double keep_prob, object noise_shape, bool is_training, string outputs_collections, string scope, Nullable<int> seed)
object dropout_dyn(object inputs, ImplicitContainer<T> keep_prob, object noise_shape, ImplicitContainer<T> is_training, object outputs_collections, object scope, object seed)
Tensor embed_sequence(IEnumerable<object> ids, Nullable<int> vocab_size, Nullable<int> embed_dim, bool unique, object initializer, object regularizer, bool trainable, string scope, Nullable<bool> reuse)
object embed_sequence_dyn(object ids, object vocab_size, object embed_dim, ImplicitContainer<T> unique, object initializer, object regularizer, ImplicitContainer<T> trainable, object scope, object reuse)
_EmbeddingColumn embedding_column(_CategoricalColumn sparse_id_column, int dimension, string combiner, Initializer initializer, object ckpt_to_load_from, string tensor_name_in_ckpt, Nullable<double> max_norm, bool trainable)
object embedding_column_dyn(object sparse_id_column, object dimension, ImplicitContainer<T> combiner, object initializer, object ckpt_to_load_from, object tensor_name_in_ckpt, object max_norm, ImplicitContainer<T> trainable)
`DenseColumn` that converts from sparse, categorical input. Use this when your inputs are sparse, but you want to convert them to a dense
representation (e.g., to feed to a DNN). Inputs must be a `CategoricalColumn` created by any of the
`categorical_column_*` function. Here is an example of using
`embedding_column` with `DNNClassifier`:
Here is an example using `embedding_column` with model_fn:
Parameters
-
object
sparse_id_column -
object
dimension - An integer specifying dimension of the embedding, must be > 0.
-
ImplicitContainer<T>
combiner - A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see `tf.embedding_lookup_sparse`.
-
object
initializer - A variable initializer function to be used in embedding variable initialization. If not specified, defaults to `truncated_normal_initializer` with mean `0.0` and standard deviation `1/sqrt(dimension)`.
-
object
ckpt_to_load_from - String representing checkpoint name/pattern from which to restore column weights. Required if `tensor_name_in_ckpt` is not `None`.
-
object
tensor_name_in_ckpt - Name of the `Tensor` in `ckpt_to_load_from` from which to restore the column weights. Required if `ckpt_to_load_from` is not `None`.
-
object
max_norm - If not `None`, embedding values are l2-normalized to this value.
-
ImplicitContainer<T>
trainable - Whether or not the embedding is trainable. Default is True.
Returns
-
object
- `DenseColumn` that converts from sparse input.
Show Example
video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [embedding_column(video_id, 9),...] estimator = tf.estimator.DNNClassifier(feature_columns=columns,...) label_column =... def input_fn(): features = tf.io.parse_example( ..., features=make_parse_example_spec(columns + [label_column])) labels = features.pop(label_column.name) return features, labels estimator.train(input_fn=input_fn, steps=100)
Tensor embedding_lookup_sparse_with_distributed_aggregation(IEnumerable<IGraphNodeBase> params, SparseTensor sp_ids, SparseTensor sp_weights, string partition_strategy, string name, string combiner, object max_norm)
Tensor embedding_lookup_sparse_with_distributed_aggregation(PartitionedVariable params, SparseTensor sp_ids, SparseTensor sp_weights, string partition_strategy, string name, string combiner, object max_norm)
object embedding_lookup_sparse_with_distributed_aggregation_dyn(object params, object sp_ids, object sp_weights, ImplicitContainer<T> partition_strategy, object name, object combiner, object max_norm)
Tensor embedding_lookup_unique(PartitionedVariable params, IEnumerable<object> ids, string partition_strategy, string name)
Tensor embedding_lookup_unique(Variable params, IEnumerable<object> ids, string partition_strategy, string name)
Tensor embedding_lookup_unique(IEnumerable<object> params, IEnumerable<object> ids, string partition_strategy, string name)
object embedding_lookup_unique_dyn(object params, object ids, ImplicitContainer<T> partition_strategy, object name)
IList<object> filter_variables(IEnumerable<Variable> var_list, IEnumerable<string> include_patterns, IEnumerable<string> exclude_patterns, bool reg_search)
object filter_variables_dyn(object var_list, object include_patterns, object exclude_patterns, ImplicitContainer<T> reg_search)
object flatten(IGraphNodeBase inputs, string outputs_collections, string scope)
Flattens an input tensor while preserving the batch axis (axis 0). (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use keras.layers.flatten instead.
Parameters
-
IGraphNodeBase
inputs - Tensor input.
-
string
outputs_collections -
string
scope
Returns
-
object
- Reshaped tensor. Examples: ``` x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32') y = flatten(x) # now `y` has shape `(None, 16)` x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32') y = flatten(x) # now `y` has shape `(None, None)` ```
object flatten(IGraphNodeBase inputs, IEnumerable<int> outputs_collections, string scope)
object flatten_dyn(object inputs, object outputs_collections, object scope)
object fully_connected(IEnumerable<IGraphNodeBase> inputs, TensorShape num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(IGraphNodeBase inputs, IEnumerable<int> num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(IEnumerable<IGraphNodeBase> inputs, Dimension num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(IGraphNodeBase inputs, Dimension num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(IEnumerable<IGraphNodeBase> inputs, int num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(PythonClassContainer inputs, IEnumerable<int> num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(IGraphNodeBase inputs, TensorShape num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(PythonClassContainer inputs, Dimension num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(PythonClassContainer inputs, TensorShape num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(PythonClassContainer inputs, int num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected(IGraphNodeBase inputs, int num_outputs, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, Nullable<bool> reuse, IEnumerable<string> variables_collections, string outputs_collections, bool trainable, object scope)
object fully_connected_dyn(object inputs, object num_outputs, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
object gdn(IGraphNodeBase inputs, bool inverse, double beta_min, double gamma_init, ImplicitContainer<T> reparam_offset, string data_format, object activity_regularizer, bool trainable, string name, object reuse)
object gdn_dyn(object inputs, ImplicitContainer<T> inverse, ImplicitContainer<T> beta_min, ImplicitContainer<T> gamma_init, ImplicitContainer<T> reparam_offset, ImplicitContainer<T> data_format, object activity_regularizer, ImplicitContainer<T> trainable, object name, object reuse)
IDictionary<string, object> get_default_binary_metrics_for_eval(IEnumerable<double> thresholds)
object get_default_binary_metrics_for_eval_dyn(object thresholds)
object get_global_step(object graph)
object get_global_step_dyn(object graph)
Get the global step tensor. The global step tensor must be an integer variable. We first try to find it
in the collection `GLOBAL_STEP`, or by name `global_step:0`.
Parameters
-
object
graph - The graph to find the global step in. If missing, use default graph.
Returns
-
object
- The global step variable, or `None` if none was found.
IList<object> get_local_variables(string scope, object suffix)
object get_local_variables_dyn(object scope, object suffix)
IList<object> get_model_variables(string scope, object suffix)
object get_model_variables_dyn(object scope, object suffix)
object get_or_create_global_step(object graph)
Returns and create (if necessary) the global step tensor.
Parameters
-
object
graph - The graph in which to create the global step tensor. If missing, use default graph.
Returns
-
object
- The global step tensor.
object get_or_create_global_step_dyn(object graph)
Returns and create (if necessary) the global step tensor.
Parameters
-
object
graph - The graph in which to create the global step tensor. If missing, use default graph.
Returns
-
object
- The global step tensor.
IList<object> get_trainable_variables(string scope, object suffix)
object get_trainable_variables_dyn(object scope, object suffix)
object get_unique_variable(string var_op_name)
object get_unique_variable_dyn(object var_op_name)
string get_variable_full_name(PartitionedVariable var)
string get_variable_full_name(object var)
string get_variable_full_name(ValueTuple<object, IEnumerable<object>> var)
string get_variable_full_name(IEnumerable<object> var)
object get_variable_full_name_dyn(object var)
IList<object> get_variables(string scope, string suffix, ImplicitContainer<T> collection)
IList<object> get_variables(VariableScope scope, string suffix, ImplicitContainer<T> collection)
string get_variables_by_name(string given_name, string scope)
object get_variables_by_name_dyn(object given_name, object scope)
object get_variables_by_suffix(string suffix, string scope)
object get_variables_by_suffix_dyn(object suffix, object scope)
object get_variables_dyn(object scope, object suffix, ImplicitContainer<T> collection)
IList<object> get_variables_to_restore(IEnumerable<string> include, IEnumerable<string> exclude)
object get_variables_to_restore_dyn(object include, object exclude)
Variable global_variable(int initial_value, bool validate_shape, string name, Nullable<bool> use_resource)
Variable global_variable(IEnumerable<int> initial_value, bool validate_shape, string name, Nullable<bool> use_resource)
object global_variable_dyn(object initial_value, ImplicitContainer<T> validate_shape, object name, object use_resource)
Tensor group_norm(IGraphNodeBase inputs, int groups, Nullable<int> channels_axis, IEnumerable<int> reduction_axes, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, object param_initializers, Nullable<bool> reuse, object variables_collections, object outputs_collections, bool trainable, string scope, bool mean_close_to_zero)
object group_norm_dyn(object inputs, ImplicitContainer<T> groups, ImplicitContainer<T> channels_axis, ImplicitContainer<T> reduction_axes, ImplicitContainer<T> center, ImplicitContainer<T> scale, ImplicitContainer<T> epsilon, object activation_fn, object param_initializers, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope, ImplicitContainer<T> mean_close_to_zero)
bool has_arg_scope(object func)
object has_arg_scope_dyn(object func)
Tensor images_to_sequence(object inputs, ImplicitContainer<T> data_format, object outputs_collections, object scope)
object images_to_sequence_dyn(object inputs, ImplicitContainer<T> data_format, object outputs_collections, object scope)
IList<_RealValuedColumn> infer_real_valued_columns(IGraphNodeBase features)
IList<_RealValuedColumn> infer_real_valued_columns(IDictionary<string, object> features)
object infer_real_valued_columns_dyn(object features)
Tensor input_from_feature_columns(IDictionary<object, object> columns_to_tensors, IDictionary<string, object> feature_columns, IEnumerable<string> weight_collections, bool trainable, VariableScope scope, IDictionary<object, object> cols_to_outs)
Tensor input_from_feature_columns(IDictionary<object, object> columns_to_tensors, IEnumerable<_RealValuedVarLenColumn> feature_columns, IEnumerable<string> weight_collections, bool trainable, VariableScope scope, IDictionary<object, object> cols_to_outs)
object input_from_feature_columns_dyn(object columns_to_tensors, object feature_columns, object weight_collections, ImplicitContainer<T> trainable, object scope, object cols_to_outs)
Tensor instance_norm(IGraphNodeBase inputs, bool center, bool scale, double epsilon, PythonFunctionContainer activation_fn, object param_initializers, Nullable<bool> reuse, object variables_collections, object outputs_collections, bool trainable, ImplicitContainer<T> data_format, string scope)
object instance_norm_dyn(object inputs, ImplicitContainer<T> center, ImplicitContainer<T> scale, ImplicitContainer<T> epsilon, object activation_fn, object param_initializers, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, ImplicitContainer<T> data_format, object scope)
object joint_weighted_sum_from_feature_columns(IDictionary<object, object> columns_to_tensors, IDictionary<object, object> feature_columns, int num_outputs, IEnumerable<string> weight_collections, bool trainable, VariableScope scope)
object joint_weighted_sum_from_feature_columns(IDictionary<object, object> columns_to_tensors, string feature_columns, int num_outputs, IEnumerable<string> weight_collections, bool trainable, VariableScope scope)
object joint_weighted_sum_from_feature_columns(IDictionary<object, object> columns_to_tensors, IEnumerable<object> feature_columns, int num_outputs, IEnumerable<string> weight_collections, bool trainable, VariableScope scope)
object joint_weighted_sum_from_feature_columns_dyn(object columns_to_tensors, object feature_columns, object num_outputs, object weight_collections, ImplicitContainer<T> trainable, object scope)
object l1_l2_regularizer(double scale_l1, double scale_l2, string scope)
object l1_l2_regularizer(int scale_l1, int scale_l2, string scope)
object l1_l2_regularizer(int scale_l1, PythonClassContainer scale_l2, string scope)
object l1_l2_regularizer(PythonClassContainer scale_l1, PythonClassContainer scale_l2, string scope)
object l1_l2_regularizer(PythonClassContainer scale_l1, int scale_l2, string scope)
object l1_l2_regularizer(PythonClassContainer scale_l1, double scale_l2, string scope)
object l1_l2_regularizer(int scale_l1, double scale_l2, string scope)
object l1_l2_regularizer(double scale_l1, int scale_l2, string scope)
object l1_l2_regularizer(double scale_l1, PythonClassContainer scale_l2, string scope)
object l1_l2_regularizer_dyn(ImplicitContainer<T> scale_l1, ImplicitContainer<T> scale_l2, object scope)
object l1_regularizer(int scale, string scope)
object l1_regularizer(double scale, string scope)
object l1_regularizer(PythonClassContainer scale, string scope)
object l1_regularizer_dyn(object scale, object scope)
object l2_regularizer(PythonClassContainer scale, string scope)
object l2_regularizer(double scale, string scope)
object l2_regularizer(int scale, string scope)
object l2_regularizer_dyn(object scale, object scope)
Tensor layer_norm(IGraphNodeBase inputs, bool center, bool scale, PythonFunctionContainer activation_fn, Nullable<bool> reuse, object variables_collections, object outputs_collections, bool trainable, int begin_norm_axis, int begin_params_axis, string scope)
object layer_norm_dyn(object inputs, ImplicitContainer<T> center, ImplicitContainer<T> scale, object activation_fn, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, ImplicitContainer<T> begin_norm_axis, ImplicitContainer<T> begin_params_axis, object scope)
Tensor legacy_fully_connected(IGraphNodeBase x, int num_output_units, PythonFunctionContainer activation_fn, ImplicitContainer<T> weight_init, ImplicitContainer<T> bias_init, string name, ImplicitContainer<T> weight_collections, ImplicitContainer<T> bias_collections, ImplicitContainer<T> output_collections, bool trainable, object weight_regularizer, object bias_regularizer)
object legacy_fully_connected_dyn(object x, object num_output_units, object activation_fn, ImplicitContainer<T> weight_init, ImplicitContainer<T> bias_init, object name, ImplicitContainer<T> weight_collections, ImplicitContainer<T> bias_collections, ImplicitContainer<T> output_collections, ImplicitContainer<T> trainable, object weight_regularizer, object bias_regularizer)
Variable local_variable(IEnumerable<int> initial_value, bool validate_shape, string name, Nullable<bool> use_resource)
Variable local_variable(IGraphNodeBase initial_value, bool validate_shape, string name, Nullable<bool> use_resource)
Variable local_variable(int initial_value, bool validate_shape, string name, Nullable<bool> use_resource)
Variable local_variable(double initial_value, bool validate_shape, string name, Nullable<bool> use_resource)
object local_variable_dyn(object initial_value, ImplicitContainer<T> validate_shape, object name, object use_resource)
IDictionary<object, object> make_place_holder_tensors_for_base_features(IEnumerable<object> feature_columns)
object make_place_holder_tensors_for_base_features_dyn(object feature_columns)
Tensor max_pool2d(IGraphNodeBase inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(IEnumerable<IGraphNodeBase> inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(IEnumerable<IGraphNodeBase> inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(IEnumerable<IGraphNodeBase> inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(IGraphNodeBase inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(IGraphNodeBase inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(ValueTuple<PythonClassContainer, PythonClassContainer> inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(IEnumerable<IGraphNodeBase> inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool2d(IGraphNodeBase inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
object max_pool2d_dyn(object inputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object outputs_collections, object scope)
Tensor max_pool3d(IGraphNodeBase inputs, int kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool3d(IGraphNodeBase inputs, TensorShape kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool3d(IGraphNodeBase inputs, IEnumerable<int> kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
Tensor max_pool3d(IGraphNodeBase inputs, Dimension kernel_size, int stride, string padding, ImplicitContainer<T> data_format, string outputs_collections, string scope)
object max_pool3d_dyn(object inputs, object kernel_size, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, object outputs_collections, object scope)
Tensor maxout(IGraphNodeBase inputs, int num_units, int axis, object scope)
object maxout_dyn(object inputs, object num_units, ImplicitContainer<T> axis, object scope)
object model_variable(string name, TensorShape shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, TensorShape shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, TensorShape shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, Dimension shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, TensorShape shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, Dimension shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, TensorShape shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, int shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, TensorShape shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, Dimension shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, ValueTuple shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, Dimension shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, int shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, int shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, int shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, IEnumerable<int> shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, IEnumerable<int> shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, IEnumerable<int> shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, Dimension shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, IEnumerable<int> shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, IEnumerable<int> shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, ValueTuple shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, ValueTuple shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, ValueTuple shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, int shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, ValueTuple shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, ValueTuple shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, Dimension shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IDictionary<object, object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, IEnumerable<int> shape, ImplicitContainer<T> dtype, object initializer, object regularizer, Nullable<bool> trainable, PythonClassContainer collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable(string name, int shape, ImplicitContainer<T> dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, IEnumerable<object> collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object model_variable_dyn(object name, object shape, ImplicitContainer<T> dtype, object initializer, object regularizer, ImplicitContainer<T> trainable, object collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, ImplicitContainer<T> synchronization, ImplicitContainer<T> aggregation)
_MultiClassTargetColumn multi_class_target(Nullable<int> n_classes, object label_name, string weight_column_name)
object multi_class_target_dyn(object n_classes, object label_name, object weight_column_name)
_OneHotColumn one_hot_column(_CategoricalColumn sparse_id_column)
object one_hot_column_dyn(object sparse_id_column)
Tensor one_hot_encoding(ndarray labels, int num_classes, double on_value, double off_value, string outputs_collections, object scope)
Tensor one_hot_encoding(IGraphNodeBase labels, int num_classes, double on_value, double off_value, string outputs_collections, object scope)
object one_hot_encoding_dyn(object labels, object num_classes, ImplicitContainer<T> on_value, ImplicitContainer<T> off_value, object outputs_collections, object scope)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IDictionary<object, object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, object clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IEnumerable<object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, double clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, object clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, double clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IEnumerable<object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IDictionary<object, object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IEnumerable<object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, object clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, string clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, double clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IEnumerable<object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IDictionary<object, object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, object clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IEnumerable<object> loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, string clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, PythonFunctionContainer optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, string clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, IDictionary<object, object> clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, string clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss(IGraphNodeBase loss, IGraphNodeBase global_step, Nullable<double> learning_rate, object optimizer, Nullable<double> gradient_noise_scale, IDictionary<object, object> gradient_multipliers, double clip_gradients, PythonFunctionContainer learning_rate_decay_fn, IEnumerable<IGraphNodeBase> update_ops, IEnumerable<object> variables, string name, IEnumerable<string> summaries, bool colocate_gradients_with_ops, bool increment_global_step)
object optimize_loss_dyn(object loss, object global_step, object learning_rate, object optimizer, object gradient_noise_scale, object gradient_multipliers, object clip_gradients, object learning_rate_decay_fn, object update_ops, object variables, object name, object summaries, ImplicitContainer<T> colocate_gradients_with_ops, ImplicitContainer<T> increment_global_step)
IDictionary<object, object> parse_feature_columns_from_examples(IEnumerable<object> serialized, IEnumerable<_RealValuedColumn> feature_columns, string name, object example_names)
IDictionary<object, object> parse_feature_columns_from_examples(IEnumerable<object> serialized, object feature_columns, string name, object example_names)
object parse_feature_columns_from_examples_dyn(object serialized, object feature_columns, object name, object example_names)
ValueTuple<IDictionary<object, object>, object> parse_feature_columns_from_sequence_examples(object serialized, IEnumerable<_OneHotColumn> context_feature_columns, IEnumerable<object> sequence_feature_columns, string name, object example_name)
object parse_feature_columns_from_sequence_examples_dyn(object serialized, object context_feature_columns, object sequence_feature_columns, object name, object example_name)
Tensor pool(IGraphNodeBase inputs, Dimension kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, TensorShape kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, IEnumerable<int> kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, int kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, TensorShape kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, TensorShape kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, int kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, IEnumerable<int> kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, int kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, IEnumerable<int> kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, TensorShape kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, IEnumerable<int> kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, Dimension kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, Dimension kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, Dimension kernel_size, string pooling_type, string padding, string data_format, int dilation_rate, int stride, string outputs_collections, string scope)
Tensor pool(IGraphNodeBase inputs, int kernel_size, string pooling_type, string padding, string data_format, IEnumerable<int> dilation_rate, IEnumerable<int> stride, string outputs_collections, string scope)
object pool_dyn(object inputs, object kernel_size, object pooling_type, ImplicitContainer<T> padding, object data_format, ImplicitContainer<T> dilation_rate, ImplicitContainer<T> stride, object outputs_collections, object scope)
_RealValuedColumn real_valued_column(string column_name, int dimension, double default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, IEnumerator<object> dimension, int default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, IEnumerator<object> dimension, IEnumerable<object> default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, IEnumerator<object> dimension, double default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, double dimension, string default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, double dimension, int default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, double dimension, IEnumerable<object> default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, int dimension, IEnumerable<object> default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, int dimension, int default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, int dimension, string default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, double dimension, double default_value, ImplicitContainer<T> dtype, object normalizer)
_RealValuedColumn real_valued_column(string column_name, IEnumerator<object> dimension, string default_value, ImplicitContainer<T> dtype, object normalizer)
object real_valued_column_dyn(object column_name, ImplicitContainer<T> dimension, object default_value, ImplicitContainer<T> dtype, object normalizer)
object recompute_grad(object fn, ImplicitContainer<T> use_data_dep, bool tupleize_grads)
object recompute_grad_dyn(object fn, ImplicitContainer<T> use_data_dep, ImplicitContainer<T> tupleize_grads)
_RegressionTargetColumn regression_target(object label_name, string weight_column_name, int label_dimension)
object regression_target_dyn(object label_name, object weight_column_name, ImplicitContainer<T> label_dimension)
object repeat(IGraphNodeBase inputs, int repetitions, object layer, Object[] args)
object repeat(IGraphNodeBase inputs, int repetitions, object layer, IDictionary<string, object> kwargs, Object[] args)
object repeat_dyn(object inputs, object repetitions, object layer, Object[] args)
object repeat_dyn(object inputs, object repetitions, object layer, IDictionary<string, object> kwargs, Object[] args)
string rev_block(object x1, object x2, IEnumerable<object> f, object g, int num_layers, IEnumerable<object> f_side_input, IEnumerable<object> g_side_input, bool is_training)
string rev_block(object x1, object x2, object f, object g, int num_layers, IEnumerable<object> f_side_input, IEnumerable<object> g_side_input, bool is_training)
object rev_block_dyn(object x1, object x2, object f, object g, ImplicitContainer<T> num_layers, object f_side_input, object g_side_input, ImplicitContainer<T> is_training)
Tensor safe_embedding_lookup_sparse(PartitionedVariable embedding_weights, IGraphNodeBase sparse_ids, IGraphNodeBase sparse_weights, string combiner, Nullable<int> default_id, string name, string partition_strategy, object max_norm)
Lookup embedding results, accounting for invalid IDs and empty features. The partitioned embedding in `embedding_weights` must all be the same shape
except for the first dimension. The first dimension is allowed to vary as the
vocabulary size is not necessarily a multiple of `P`. `embedding_weights`
may be a `PartitionedVariable` as returned by using
`tf.compat.v1.get_variable()` with a
partitioner. Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs
with non-positive weight. For an entry with no features, the embedding vector
for `default_id` is returned, or the 0-vector if `default_id` is not supplied. The ids and weights may be multi-dimensional. Embeddings are always aggregated
along the last dimension.
Parameters
-
PartitionedVariable
embedding_weights - A list of `P` float `Tensor`s or values representing partitioned embedding `Tensor`s. Alternatively, a `PartitionedVariable` created by partitioning along dimension 0. The total unpartitioned shape should be `[e_0, e_1,..., e_m]`, where `e_0` represents the vocab size and `e_1,..., e_m` are the embedding dimensions.
-
IGraphNodeBase
sparse_ids - `SparseTensor` of shape `[d_0, d_1,..., d_n]` containing the ids. `d_0` is typically batch size.
-
IGraphNodeBase
sparse_weights - `SparseTensor` of same shape as `sparse_ids`, containing float weights corresponding to `sparse_ids`, or `None` if all weights are be assumed to be 1.0.
-
string
combiner - A string specifying how to combine embedding results for each entry. Currently "mean", "sqrtn" and "sum" are supported, with "mean" the default.
-
Nullable<int>
default_id - The id to use for an entry with no features.
-
string
name - A name for this operation (optional).
-
string
partition_strategy - A string specifying the partitioning strategy. Currently `"div"` and `"mod"` are supported. Default is `"div"`.
-
object
max_norm - If not `None`, all embeddings are l2-normalized to max_norm before combining.
Returns
-
Tensor
- Dense `Tensor` of shape `[d_0, d_1,..., d_{n-1}, e_1,..., e_m]`.
Tensor safe_embedding_lookup_sparse(Variable embedding_weights, IGraphNodeBase sparse_ids, IGraphNodeBase sparse_weights, string combiner, Nullable<int> default_id, string name, string partition_strategy, object max_norm)
Lookup embedding results, accounting for invalid IDs and empty features. The partitioned embedding in `embedding_weights` must all be the same shape
except for the first dimension. The first dimension is allowed to vary as the
vocabulary size is not necessarily a multiple of `P`. `embedding_weights`
may be a `PartitionedVariable` as returned by using
`tf.compat.v1.get_variable()` with a
partitioner. Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs
with non-positive weight. For an entry with no features, the embedding vector
for `default_id` is returned, or the 0-vector if `default_id` is not supplied. The ids and weights may be multi-dimensional. Embeddings are always aggregated
along the last dimension.
Parameters
-
Variable
embedding_weights - A list of `P` float `Tensor`s or values representing partitioned embedding `Tensor`s. Alternatively, a `PartitionedVariable` created by partitioning along dimension 0. The total unpartitioned shape should be `[e_0, e_1,..., e_m]`, where `e_0` represents the vocab size and `e_1,..., e_m` are the embedding dimensions.
-
IGraphNodeBase
sparse_ids - `SparseTensor` of shape `[d_0, d_1,..., d_n]` containing the ids. `d_0` is typically batch size.
-
IGraphNodeBase
sparse_weights - `SparseTensor` of same shape as `sparse_ids`, containing float weights corresponding to `sparse_ids`, or `None` if all weights are be assumed to be 1.0.
-
string
combiner - A string specifying how to combine embedding results for each entry. Currently "mean", "sqrtn" and "sum" are supported, with "mean" the default.
-
Nullable<int>
default_id - The id to use for an entry with no features.
-
string
name - A name for this operation (optional).
-
string
partition_strategy - A string specifying the partitioning strategy. Currently `"div"` and `"mod"` are supported. Default is `"div"`.
-
object
max_norm - If not `None`, all embeddings are l2-normalized to max_norm before combining.
Returns
-
Tensor
- Dense `Tensor` of shape `[d_0, d_1,..., d_{n-1}, e_1,..., e_m]`.
Tensor safe_embedding_lookup_sparse(IEnumerable<object> embedding_weights, IGraphNodeBase sparse_ids, IGraphNodeBase sparse_weights, string combiner, Nullable<int> default_id, string name, string partition_strategy, object max_norm)
Lookup embedding results, accounting for invalid IDs and empty features. The partitioned embedding in `embedding_weights` must all be the same shape
except for the first dimension. The first dimension is allowed to vary as the
vocabulary size is not necessarily a multiple of `P`. `embedding_weights`
may be a `PartitionedVariable` as returned by using
`tf.compat.v1.get_variable()` with a
partitioner. Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs
with non-positive weight. For an entry with no features, the embedding vector
for `default_id` is returned, or the 0-vector if `default_id` is not supplied. The ids and weights may be multi-dimensional. Embeddings are always aggregated
along the last dimension.
Parameters
-
IEnumerable<object>
embedding_weights - A list of `P` float `Tensor`s or values representing partitioned embedding `Tensor`s. Alternatively, a `PartitionedVariable` created by partitioning along dimension 0. The total unpartitioned shape should be `[e_0, e_1,..., e_m]`, where `e_0` represents the vocab size and `e_1,..., e_m` are the embedding dimensions.
-
IGraphNodeBase
sparse_ids - `SparseTensor` of shape `[d_0, d_1,..., d_n]` containing the ids. `d_0` is typically batch size.
-
IGraphNodeBase
sparse_weights - `SparseTensor` of same shape as `sparse_ids`, containing float weights corresponding to `sparse_ids`, or `None` if all weights are be assumed to be 1.0.
-
string
combiner - A string specifying how to combine embedding results for each entry. Currently "mean", "sqrtn" and "sum" are supported, with "mean" the default.
-
Nullable<int>
default_id - The id to use for an entry with no features.
-
string
name - A name for this operation (optional).
-
string
partition_strategy - A string specifying the partitioning strategy. Currently `"div"` and `"mod"` are supported. Default is `"div"`.
-
object
max_norm - If not `None`, all embeddings are l2-normalized to max_norm before combining.
Returns
-
Tensor
- Dense `Tensor` of shape `[d_0, d_1,..., d_{n-1}, e_1,..., e_m]`.
Tensor safe_embedding_lookup_sparse(object embedding_weights, IGraphNodeBase sparse_ids, IGraphNodeBase sparse_weights, string combiner, Nullable<int> default_id, string name, string partition_strategy, object max_norm)
Lookup embedding results, accounting for invalid IDs and empty features. The partitioned embedding in `embedding_weights` must all be the same shape
except for the first dimension. The first dimension is allowed to vary as the
vocabulary size is not necessarily a multiple of `P`. `embedding_weights`
may be a `PartitionedVariable` as returned by using
`tf.compat.v1.get_variable()` with a
partitioner. Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs
with non-positive weight. For an entry with no features, the embedding vector
for `default_id` is returned, or the 0-vector if `default_id` is not supplied. The ids and weights may be multi-dimensional. Embeddings are always aggregated
along the last dimension.
Parameters
-
object
embedding_weights - A list of `P` float `Tensor`s or values representing partitioned embedding `Tensor`s. Alternatively, a `PartitionedVariable` created by partitioning along dimension 0. The total unpartitioned shape should be `[e_0, e_1,..., e_m]`, where `e_0` represents the vocab size and `e_1,..., e_m` are the embedding dimensions.
-
IGraphNodeBase
sparse_ids - `SparseTensor` of shape `[d_0, d_1,..., d_n]` containing the ids. `d_0` is typically batch size.
-
IGraphNodeBase
sparse_weights - `SparseTensor` of same shape as `sparse_ids`, containing float weights corresponding to `sparse_ids`, or `None` if all weights are be assumed to be 1.0.
-
string
combiner - A string specifying how to combine embedding results for each entry. Currently "mean", "sqrtn" and "sum" are supported, with "mean" the default.
-
Nullable<int>
default_id - The id to use for an entry with no features.
-
string
name - A name for this operation (optional).
-
string
partition_strategy - A string specifying the partitioning strategy. Currently `"div"` and `"mod"` are supported. Default is `"div"`.
-
object
max_norm - If not `None`, all embeddings are l2-normalized to max_norm before combining.
Returns
-
Tensor
- Dense `Tensor` of shape `[d_0, d_1,..., d_{n-1}, e_1,..., e_m]`.
object safe_embedding_lookup_sparse_dyn(object embedding_weights, object sparse_ids, object sparse_weights, object combiner, object default_id, object name, ImplicitContainer<T> partition_strategy, object max_norm)
object scale_gradient(object inputs, object gradient_multiplier)
object scale_gradient_dyn(object inputs, object gradient_multiplier)
_ScatteredEmbeddingColumn scattered_embedding_column(string column_name, int size, int dimension, int hash_key, string combiner, object initializer)
object scattered_embedding_column_dyn(object column_name, object size, object dimension, object hash_key, ImplicitContainer<T> combiner, object initializer)
Tensor scattered_embedding_lookup(IEnumerable<object> params, ndarray values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(IEnumerable<object> params, RaggedTensor values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(PartitionedVariable params, RaggedTensor values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(IEnumerable<object> params, IDictionary<object, object> values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(PartitionedVariable params, ValueTuple<double, object> values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(PartitionedVariable params, IEnumerable<double> values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(PartitionedVariable params, IDictionary<object, object> values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(IEnumerable<object> params, IEnumerable<double> values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(IEnumerable<object> params, ValueTuple<double, object> values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(PartitionedVariable params, ndarray values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(IEnumerable<object> params, IGraphNodeBase values, int dimension, string name, object hash_key)
Tensor scattered_embedding_lookup(PartitionedVariable params, IGraphNodeBase values, int dimension, string name, object hash_key)
object scattered_embedding_lookup_dyn(object params, object values, object dimension, object name, object hash_key)
Tensor scattered_embedding_lookup_sparse(PartitionedVariable params, IGraphNodeBase sparse_values, int dimension, string combiner, object default_value, string name, object hash_key)
Tensor scattered_embedding_lookup_sparse(IEnumerable<object> params, IGraphNodeBase sparse_values, int dimension, string combiner, object default_value, string name, object hash_key)
Tensor scattered_embedding_lookup_sparse(Variable params, IGraphNodeBase sparse_values, int dimension, string combiner, object default_value, string name, object hash_key)
object scattered_embedding_lookup_sparse_dyn(object params, object sparse_values, object dimension, object combiner, object default_value, object name, object hash_key)
Tensor separable_convolution2d(IGraphNodeBase inputs, Nullable<int> num_outputs, IEnumerable<int> kernel_size, double depth_multiplier, int stride, string padding, ImplicitContainer<T> data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, Initializer weights_initializer, object pointwise_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope)
Tensor separable_convolution2d(IGraphNodeBase inputs, Nullable<int> num_outputs, IEnumerable<int> kernel_size, int depth_multiplier, int stride, string padding, ImplicitContainer<T> data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object pointwise_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope)
Tensor separable_convolution2d(IGraphNodeBase inputs, Nullable<int> num_outputs, IEnumerable<int> kernel_size, double depth_multiplier, int stride, string padding, ImplicitContainer<T> data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, ImplicitContainer<T> weights_initializer, object pointwise_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope)
Tensor separable_convolution2d(IGraphNodeBase inputs, Nullable<int> num_outputs, IEnumerable<int> kernel_size, int depth_multiplier, int stride, string padding, ImplicitContainer<T> data_format, int rate, ImplicitContainer<T> activation_fn, PythonFunctionContainer normalizer_fn, IDictionary<string, object> normalizer_params, Initializer weights_initializer, object pointwise_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, bool trainable, string scope)
object separable_convolution2d_dyn(object inputs, object num_outputs, object kernel_size, ImplicitContainer<T> depth_multiplier, ImplicitContainer<T> stride, ImplicitContainer<T> padding, ImplicitContainer<T> data_format, ImplicitContainer<T> rate, ImplicitContainer<T> activation_fn, object normalizer_fn, object normalizer_params, ImplicitContainer<T> weights_initializer, object pointwise_initializer, object weights_regularizer, ImplicitContainer<T> biases_initializer, object biases_regularizer, object reuse, object variables_collections, object outputs_collections, ImplicitContainer<T> trainable, object scope)
Tensor sequence_input_from_feature_columns(IDictionary<object, object> columns_to_tensors, IEnumerable<_RealValuedColumn> feature_columns, IEnumerable<string> weight_collections, bool trainable, object scope)
object sequence_input_from_feature_columns_dyn(object columns_to_tensors, object feature_columns, object weight_collections, ImplicitContainer<T> trainable, object scope)
Tensor sequence_to_images(object inputs, int height, string output_data_format, object outputs_collections, object scope)
object sequence_to_images_dyn(object inputs, object height, ImplicitContainer<T> output_data_format, object outputs_collections, object scope)
Tensor softmax(ValueTuple<PythonClassContainer, PythonClassContainer> logits, string scope)
Tensor softmax(IEnumerable<IGraphNodeBase> logits, string scope)
Tensor softmax(IGraphNodeBase logits, string scope)
object softmax_dyn(object logits, object scope)
object sparse_column_with_hash_bucket(string column_name, int hash_bucket_size, string combiner, ImplicitContainer<T> dtype, int hash_keys)
object sparse_column_with_hash_bucket(string column_name, double hash_bucket_size, string combiner, ImplicitContainer<T> dtype, IEnumerable<object> hash_keys)
object sparse_column_with_hash_bucket(string column_name, int hash_bucket_size, string combiner, ImplicitContainer<T> dtype, IEnumerable<object> hash_keys)
object sparse_column_with_hash_bucket(string column_name, double hash_bucket_size, string combiner, ImplicitContainer<T> dtype, int hash_keys)
object sparse_column_with_hash_bucket_dyn(object column_name, object hash_bucket_size, ImplicitContainer<T> combiner, ImplicitContainer<T> dtype, object hash_keys)
object sparse_column_with_integerized_feature(string column_name, int bucket_size, string combiner, ImplicitContainer<T> dtype)
object sparse_column_with_integerized_feature_dyn(object column_name, object bucket_size, ImplicitContainer<T> combiner, ImplicitContainer<T> dtype)
object sparse_column_with_keys(string column_name, IEnumerable<string> keys, int default_value, string combiner, ImplicitContainer<T> dtype)
object sparse_column_with_keys_dyn(object column_name, object keys, ImplicitContainer<T> default_value, ImplicitContainer<T> combiner, ImplicitContainer<T> dtype)
object sparse_column_with_vocabulary_file(string column_name, string vocabulary_file, int num_oov_buckets, Nullable<int> vocab_size, int default_value, string combiner, ImplicitContainer<T> dtype)
object sparse_column_with_vocabulary_file_dyn(object column_name, object vocabulary_file, ImplicitContainer<T> num_oov_buckets, object vocab_size, ImplicitContainer<T> default_value, ImplicitContainer<T> combiner, ImplicitContainer<T> dtype)
SparseTensor sparse_feature_cross(IEnumerable<SparseTensor> inputs, bool hashed_output, int num_buckets, string name, Nullable<int> hash_key)
SparseTensor sparse_feature_cross(IEnumerable<SparseTensor> inputs, bool hashed_output, IEnumerable<object> num_buckets, string name, Nullable<int> hash_key)
object sparse_feature_cross_dyn(object inputs, ImplicitContainer<T> hashed_output, ImplicitContainer<T> num_buckets, object name, object hash_key)
Tensor spatial_softmax(IGraphNodeBase features, object temperature, string name, object variables_collections, bool trainable, string data_format)
object spatial_softmax_dyn(object features, object temperature, object name, object variables_collections, ImplicitContainer<T> trainable, ImplicitContainer<T> data_format)
Tensor stack(IGraphNodeBase inputs, object layer, IEnumerable<int> stack_args, IDictionary<string, object> kwargs)
object stack_dyn(object inputs, object layer, object stack_args, IDictionary<string, object> kwargs)
object sum_regularizer(IEnumerable<object> regularizer_list, string scope)
object sum_regularizer_dyn(object regularizer_list, object scope)
Tensor summarize_activation(IGraphNodeBase op)
object summarize_activation_dyn(object op)
IList<object> summarize_activations(object name_filter, ImplicitContainer<T> summarizer)
object summarize_activations_dyn(object name_filter, ImplicitContainer<T> summarizer)
IList<object> summarize_collection(string collection, string name_filter, ImplicitContainer<T> summarizer)
object summarize_collection_dyn(object collection, object name_filter, ImplicitContainer<T> summarizer)
object summarize_tensor_dyn(object tensor, object tag)
IList<object> summarize_tensors(IEnumerable<object> tensors, ImplicitContainer<T> summarizer)
object summarize_tensors_dyn(object tensors, ImplicitContainer<T> summarizer)
IDictionary<object, object> transform_features(IDictionary<object, object> features, IEnumerable<_RealValuedVarLenColumn> feature_columns)
IDictionary<object, object> transform_features(PythonClassContainer features, IEnumerable<_RealValuedVarLenColumn> feature_columns)
object transform_features_dyn(object features, object feature_columns)
Tensor unit_norm(IGraphNodeBase inputs, int dim, double epsilon, object scope)
Tensor unit_norm(IGraphNodeBase inputs, IEnumerable<int> dim, double epsilon, object scope)
object unit_norm_dyn(object inputs, object dim, ImplicitContainer<T> epsilon, object scope)
object variable(string name, IEnumerable<object> shape, DType dtype, IGraphNodeBase initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, Dimension shape, DType dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, int shape, DType dtype, IGraphNodeBase initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, TensorShape shape, DType dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, TensorShape shape, DType dtype, IGraphNodeBase initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, int shape, DType dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, ValueTuple shape, DType dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, IEnumerable<object> shape, DType dtype, Initializer initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, ValueTuple shape, DType dtype, IGraphNodeBase initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable(string name, Dimension shape, DType dtype, IGraphNodeBase initializer, object regularizer, Nullable<bool> trainable, object collections, object caching_device, string device, object partitioner, object custom_getter, object use_resource, VariableSynchronization synchronization, VariableAggregation aggregation)
object variable_dyn(object name, object shape, object dtype, object initializer, object regularizer, ImplicitContainer<T> trainable, object collections, object caching_device, object device, object partitioner, object custom_getter, object use_resource, ImplicitContainer<T> synchronization, ImplicitContainer<T> aggregation)
object variance_scaling_initializer(double factor, string mode, bool uniform, Nullable<int> seed, ImplicitContainer<T> dtype)
object variance_scaling_initializer_dyn(ImplicitContainer<T> factor, ImplicitContainer<T> mode, ImplicitContainer<T> uniform, object seed, ImplicitContainer<T> dtype)
_WeightedSparseColumn weighted_sparse_column(_SparseColumn sparse_id_column, string weight_column_name, ImplicitContainer<T> dtype)
object weighted_sparse_column_dyn(object sparse_id_column, object weight_column_name, ImplicitContainer<T> dtype)
object weighted_sum_from_feature_columns(IDictionary<object, object> columns_to_tensors, IEnumerable<object> feature_columns, int num_outputs, IEnumerable<string> weight_collections, bool trainable, VariableScope scope)
object weighted_sum_from_feature_columns(IDictionary<object, object> columns_to_tensors, string feature_columns, int num_outputs, IEnumerable<string> weight_collections, bool trainable, VariableScope scope)
object weighted_sum_from_feature_columns(IDictionary<object, object> columns_to_tensors, IDictionary<string, object> feature_columns, int num_outputs, IEnumerable<string> weight_collections, bool trainable, VariableScope scope)
object weighted_sum_from_feature_columns_dyn(object columns_to_tensors, object feature_columns, object num_outputs, object weight_collections, ImplicitContainer<T> trainable, object scope)
object xavier_initializer(bool uniform, Nullable<int> seed, ImplicitContainer<T> dtype)
object xavier_initializer_dyn(ImplicitContainer<T> uniform, object seed, ImplicitContainer<T> dtype)
object zero_initializer(Variable ref, bool use_locking, string name)
object zero_initializer_dyn(object ref, ImplicitContainer<T> use_locking, ImplicitContainer<T> name)
Public properties
PythonFunctionContainer _BinarySvmTargetColumn_fn get;
PythonFunctionContainer _BucketizedColumn_fn get;
PythonFunctionContainer _CrossedColumn_fn get;
PythonFunctionContainer _DeepEmbeddingLookupArguments_fn get;
PythonFunctionContainer _EmbeddingColumn_fn get;
PythonFunctionContainer _FeatureColumn_fn get;
PythonFunctionContainer _LazyBuilderByColumnsToTensor_fn get;
PythonFunctionContainer _LinearEmbeddingLookupArguments_fn get;
PythonFunctionContainer _MetricKeys_fn get;
PythonFunctionContainer _MultiClassTargetColumn_fn get;
PythonFunctionContainer _OneHotColumn_fn get;
PythonFunctionContainer _RealValuedColumn_fn get;
PythonFunctionContainer _RealValuedVarLenColumn_fn get;
PythonFunctionContainer _RegressionTargetColumn_fn get;
PythonFunctionContainer _ScatteredEmbeddingColumn_fn get;
PythonFunctionContainer _SparseColumn_fn get;
PythonFunctionContainer _SparseColumnHashed_fn get;
PythonFunctionContainer _SparseColumnIntegerized_fn get;
PythonFunctionContainer _SparseColumnKeys_fn get;
PythonFunctionContainer _SparseColumnVocabulary_fn get;
PythonFunctionContainer _SparseIdLookupConfig_fn get;
PythonFunctionContainer _TargetColumn_fn get;
PythonFunctionContainer _Transformer_fn get;
PythonFunctionContainer _WeightedSparseColumn_fn get;
PythonFunctionContainer adaptive_clipping_fn_fn get;
PythonFunctionContainer add_arg_scope_fn get;
PythonFunctionContainer add_model_variable_fn get;
PythonFunctionContainer apply_regularization_fn get;
PythonFunctionContainer arg_scope__fn get;
PythonFunctionContainer arg_scope_func_key_fn get;
PythonFunctionContainer arg_scoped_arguments_fn get;
PythonFunctionContainer assert_global_step_fn get;
PythonFunctionContainer assert_or_get_global_step_fn get;
PythonFunctionContainer assign_from_checkpoint_fn_ get;
PythonFunctionContainer assign_from_checkpoint_fn_fn get;
PythonFunctionContainer assign_from_values_fn_ get;
PythonFunctionContainer assign_from_values_fn_fn get;
PythonFunctionContainer avg_pool2d_fn get;
PythonFunctionContainer avg_pool3d_fn get;
PythonFunctionContainer batch_norm_fn get;
PythonFunctionContainer bias_add_fn get;
PythonFunctionContainer binary_svm_target_fn get;
PythonFunctionContainer bow_encoder_fn get;
PythonFunctionContainer bucketize_fn get;
PythonFunctionContainer bucketized_column_fn get;
PythonFunctionContainer check_feature_columns_fn get;
PythonFunctionContainer convolution_fn get;
PythonFunctionContainer convolution1d_fn get;
PythonFunctionContainer convolution2d_fn get;
PythonFunctionContainer convolution2d_in_plane_fn get;
PythonFunctionContainer convolution2d_transpose_fn get;
PythonFunctionContainer convolution3d_fn get;
PythonFunctionContainer convolution3d_transpose_fn get;
PythonFunctionContainer create_feature_spec_for_parsing_fn get;
PythonFunctionContainer create_global_step_fn get;
PythonFunctionContainer crossed_column_fn get;
PythonFunctionContainer current_arg_scope_fn get;
PythonFunctionContainer DataFrameColumn_fn get;
PythonFunctionContainer dense_to_sparse_fn get;
PythonFunctionContainer dropout_fn get;
Delegate elu get; set;
object elu_dyn get; set;
PythonFunctionContainer embed_sequence_fn get;
PythonFunctionContainer embedding_column_fn get;
PythonFunctionContainer embedding_lookup_sparse_with_distributed_aggregation_fn get;
PythonFunctionContainer embedding_lookup_unique_fn get;
PythonFunctionContainer filter_variables_fn get;
PythonFunctionContainer flatten_fn get;
PythonFunctionContainer fully_connected_fn get;
PythonFunctionContainer gdn_fn get;
PythonFunctionContainer GDN_fn get;
PythonFunctionContainer get_default_binary_metrics_for_eval_fn get;
PythonFunctionContainer get_global_step_fn get;
PythonFunctionContainer get_local_variables_fn get;
PythonFunctionContainer get_model_variables_fn get;
PythonFunctionContainer get_or_create_global_step_fn get;
PythonFunctionContainer get_trainable_variables_fn get;
PythonFunctionContainer get_unique_variable_fn get;
PythonFunctionContainer get_variable_full_name_fn get;
PythonFunctionContainer get_variables_by_name_fn get;
PythonFunctionContainer get_variables_by_suffix_fn get;
PythonFunctionContainer get_variables_fn get;
PythonFunctionContainer get_variables_to_restore_fn get;
PythonFunctionContainer global_variable_fn get;
PythonFunctionContainer group_norm_fn get;
PythonFunctionContainer has_arg_scope_fn get;
PythonFunctionContainer images_to_sequence_fn get;
PythonFunctionContainer infer_real_valued_columns_fn get;
PythonFunctionContainer input_from_feature_columns_fn get;
PythonFunctionContainer instance_norm_fn get;
PythonFunctionContainer joint_weighted_sum_from_feature_columns_fn get;
PythonFunctionContainer l1_l2_regularizer_fn get;
PythonFunctionContainer l1_regularizer_fn get;
PythonFunctionContainer l2_regularizer_fn get;
PythonFunctionContainer layer_norm_fn get;
PythonClassContainer LAYER_RE get; set;
object LAYER_RE_dyn get; set;
PythonFunctionContainer legacy_fully_connected_fn get;
Delegate legacy_linear get; set;
object legacy_linear_dyn get; set;
Delegate legacy_relu get; set;
object legacy_relu_dyn get; set;
Delegate linear get; set;
object linear_dyn get; set;
PythonFunctionContainer local_variable_fn get;
PythonFunctionContainer make_place_holder_tensors_for_base_features_fn get;
PythonFunctionContainer max_pool2d_fn get;
PythonFunctionContainer max_pool3d_fn get;
PythonFunctionContainer maxout_fn get;
PythonFunctionContainer model_variable_fn get;
PythonFunctionContainer multi_class_target_fn get;
PythonFunctionContainer one_hot_column_fn get;
PythonFunctionContainer one_hot_encoding_fn get;
PythonFunctionContainer optimize_loss_fn get;
IDictionary<string, object> OPTIMIZER_CLS_NAMES get; set;
object OPTIMIZER_CLS_NAMES_dyn get; set;
IList<string> OPTIMIZER_SUMMARIES get; set;
object OPTIMIZER_SUMMARIES_dyn get; set;
PythonFunctionContainer parse_feature_columns_from_examples_fn get;
PythonFunctionContainer parse_feature_columns_from_sequence_examples_fn get;
PythonFunctionContainer pool_fn get;
PythonFunctionContainer ProblemType_fn get;
PythonFunctionContainer real_valued_column_fn get;
PythonFunctionContainer recompute_grad_fn get;
PythonFunctionContainer regression_target_fn get;
Delegate relu get; set;
object relu_dyn get; set;
Delegate relu6 get; set;
object relu6_dyn get; set;
PythonFunctionContainer repeat_fn get;
PythonFunctionContainer rev_block_fn get;
PythonFunctionContainer RevBlock_fn get;
PythonFunctionContainer safe_embedding_lookup_sparse_fn get;
PythonFunctionContainer scale_gradient_fn get;
PythonFunctionContainer scattered_embedding_column_fn get;
PythonFunctionContainer scattered_embedding_lookup_fn get;
PythonFunctionContainer scattered_embedding_lookup_sparse_fn get;
PythonFunctionContainer separable_convolution2d_fn get;
PythonFunctionContainer sequence_input_from_feature_columns_fn get;
PythonFunctionContainer sequence_to_images_fn get;
PythonFunctionContainer softmax_fn get;
PythonFunctionContainer sparse_column_with_hash_bucket_fn get;
PythonFunctionContainer sparse_column_with_integerized_feature_fn get;
PythonFunctionContainer sparse_column_with_keys_fn get;
PythonFunctionContainer sparse_column_with_vocabulary_file_fn get;
PythonFunctionContainer sparse_feature_cross_fn get;
PythonFunctionContainer spatial_softmax_fn get;
PythonFunctionContainer stack_fn get;
PythonFunctionContainer sum_regularizer_fn get;
PythonFunctionContainer summarize_activation_fn get;
PythonFunctionContainer summarize_activations_fn get;
Delegate summarize_biases get; set;
object summarize_biases_dyn get; set;
PythonFunctionContainer summarize_collection_fn get;
PythonFunctionContainer summarize_tensor_fn get;
PythonFunctionContainer summarize_tensors_fn get;
Delegate summarize_variables get; set;
object summarize_variables_dyn get; set;
Delegate summarize_weights get; set;
object summarize_weights_dyn get; set;
PythonFunctionContainer transform_features_fn get;
PythonFunctionContainer unit_norm_fn get;
PythonFunctionContainer variable_fn get;
PythonFunctionContainer VariableDeviceChooser_fn get;
PythonFunctionContainer variance_scaling_initializer_fn get;
PythonFunctionContainer weighted_sparse_column_fn get;
PythonFunctionContainer weighted_sum_from_feature_columns_fn get;
PythonFunctionContainer xavier_initializer_fn get;
PythonFunctionContainer zero_initializer_fn get;
Public fields
BigInteger SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY
return BigInteger
|
string DATA_FORMAT_NCHW
return string
|
string DATA_FORMAT_NHWC
return string
|
string DATA_FORMAT_NCDHW
return string
|
string DATA_FORMAT_NDHWC
return string
|