LostTech.TensorFlow : API Documentation

Type RaggedTensor

Namespace tensorflow

Parent PythonObjectContainer

Interfaces CompositeTensor, IRaggedTensor

Represents a ragged tensor.

A `RaggedTensor` is a tensor with one or more *ragged dimensions*, which are dimensions whose slices may have different lengths. For example, the inner (column) dimension of `rt=[[3, 1, 4, 1], [], [5, 9, 2], [6], []]` is ragged, since the column slices (`rt[0, :]`,..., `rt[4, :]`) have different lengths. Dimensions whose slices all have the same length are called *uniform dimensions*. The outermost dimension of a `RaggedTensor` is always uniform, since it consists of a single slice (and so there is no possibility for differing slice lengths).

The total number of dimensions in a `RaggedTensor` is called its *rank*, and the number of ragged dimensions in a `RaggedTensor` is called its *ragged-rank*. A `RaggedTensor`'s ragged-rank is fixed at graph creation time: it can't depend on the runtime values of `Tensor`s, and can't vary dynamically for different session runs.

### Potentially Ragged Tensors

Many ops support both `Tensor`s and `RaggedTensor`s. The term "potentially ragged tensor" may be used to refer to a tensor that might be either a `Tensor` or a `RaggedTensor`. The ragged-rank of a `Tensor` is zero.

### Documenting RaggedTensor Shapes

When documenting the shape of a RaggedTensor, ragged dimensions can be indicated by enclosing them in parentheses. For example, the shape of a 3-D `RaggedTensor` that stores the fixed-size word embedding for each word in a sentence, for each sentence in a batch, could be written as `[num_sentences, (num_words), embedding_size]`. The parentheses around `(num_words)` indicate that dimension is ragged, and that the length of each element list in that dimension may vary for each item.

### Component Tensors

Internally, a `RaggedTensor` consists of a concatenated list of values that are partitioned into variable-length rows. In particular, each `RaggedTensor` consists of:

* A `values` tensor, which concatenates the variable-length rows into a flattened list. For example, the `values` tensor for `[[3, 1, 4, 1], [], [5, 9, 2], [6], []]` is `[3, 1, 4, 1, 5, 9, 2, 6]`.

* A `row_splits` vector, which indicates how those flattened values are divided into rows. In particular, the values for row `rt[i]` are stored in the slice `rt.values[rt.row_splits[i]:rt.row_splits[i+1]]`.

Example: ### Alternative Row-Partitioning Schemes

In addition to `row_splits`, ragged tensors provide support for four other row-partitioning schemes:

* `row_lengths`: a vector with shape `[nrows]`, which specifies the length of each row.

* `value_rowids` and `nrows`: `value_rowids` is a vector with shape `[nvals]`, corresponding one-to-one with `values`, which specifies each value's row index. In particular, the row `rt[row]` consists of the values `rt.values[j]` where `value_rowids[j]==row`. `nrows` is an integer scalar that specifies the number of rows in the `RaggedTensor`. (`nrows` is used to indicate trailing empty rows.)

* `row_starts`: a vector with shape `[nrows]`, which specifies the start offset of each row. Equivalent to `row_splits[:-1]`.

* `row_limits`: a vector with shape `[nrows]`, which specifies the stop offset of each row. Equivalent to `row_splits[1:]`.

Example: The following ragged tensors are equivalent, and all represent the nested list `[[3, 1, 4, 1], [], [5, 9, 2], [6], []]`. ### Multiple Ragged Dimensions

`RaggedTensor`s with multiple ragged dimensions can be defined by using a nested `RaggedTensor` for the `values` tensor. Each nested `RaggedTensor` adds a single ragged dimension. The factory function `RaggedTensor.from_nested_row_splits` may be used to construct a `RaggedTensor` with multiple ragged dimensions directly, by providing a list of `row_splits` tensors: ### Uniform Inner Dimensions

`RaggedTensor`s with uniform inner dimensions can be defined by using a multidimensional `Tensor` for `values`. ### RaggedTensor Shape Restrictions

The shape of a RaggedTensor is currently restricted to have the following form:

* A single uniform dimension * Followed by one or more ragged dimensions * Followed by zero or more uniform dimensions.

This restriction follows from the fact that each nested `RaggedTensor` replaces the uniform outermost dimension of its `values` with a uniform dimension followed by a ragged dimension.
Show Example
>>> print(tf.RaggedTensor.from_row_splits(
           ...     values=[3, 1, 4, 1, 5, 9, 2, 6],
           ...     row_splits=[0, 4, 4, 7, 8, 8]))
             

Methods

Properties

Public instance methods

object __getitem__(IGraphNodeBase key)

Returns the specified piece of this RaggedTensor.

Supports multidimensional indexing and slicing, with one restriction: indexing into a ragged inner dimension is not allowed. This case is problematic because the indicated value may exist in some rows but not others. In such cases, it's not obvious whether we should (1) report an IndexError; (2) use a default value; or (3) skip that value and return a tensor with fewer rows than we started with. Following the guiding principles of Python ("In the face of ambiguity, refuse the temptation to guess"), we simply disallow this operation.

Any dimensions added by `array_ops.newaxis` will be ragged if the following dimension is ragged.
Parameters
IGraphNodeBase key
Indicates which piece of the RaggedTensor to return, using standard Python semantics (e.g., negative values index from the end). `key` may have any of the following types:

* `int` constant * Scalar integer `Tensor` * `slice` containing integer constants and/or scalar integer `Tensor`s * `Ellipsis` * tf.newaxis * `tuple` containing any of the above (for multidimentional indexing)
Returns
object
A `Tensor` or `RaggedTensor` object. Values that include at least one ragged dimension are returned as `RaggedTensor`. Values that include no ragged dimensions are returned as `Tensor`. See above for examples of expressions that return `Tensor`s vs `RaggedTensor`s.

object bounding_shape(IEnumerable<int> axis, string name, object out_type)

Returns the tight bounding box shape for this `RaggedTensor`.
Parameters
IEnumerable<int> axis
An integer scalar or vector indicating which axes to return the bounding box for. If not specified, then the full bounding box is returned.
string name
A name prefix for the returned tensor (optional).
object out_type
`dtype` for the returned tensor. Defaults to `self.row_splits.dtype`.
Returns
object
An integer `Tensor` (`dtype=self.row_splits.dtype`). If `axis` is not specified, then `output` is a vector with `output.shape=[self.shape.ndims]`. If `axis` is a scalar, then the `output` is a scalar. If `axis` is a vector, then `output` is a vector, where `output[i]` is the bounding size for dimension `axis[i]`.

#### Example: ```python >>> rt = ragged.constant([[1, 2, 3, 4], [5], [], [6, 7, 8, 9], [10]]) >>> rt.bounding_shape() [5, 4] ```

object bounding_shape(int axis, string name, object out_type)

Returns the tight bounding box shape for this `RaggedTensor`.
Parameters
int axis
An integer scalar or vector indicating which axes to return the bounding box for. If not specified, then the full bounding box is returned.
string name
A name prefix for the returned tensor (optional).
object out_type
`dtype` for the returned tensor. Defaults to `self.row_splits.dtype`.
Returns
object
An integer `Tensor` (`dtype=self.row_splits.dtype`). If `axis` is not specified, then `output` is a vector with `output.shape=[self.shape.ndims]`. If `axis` is a scalar, then the `output` is a scalar. If `axis` is a vector, then `output` is a vector, where `output[i]` is the bounding size for dimension `axis[i]`.

#### Example: ```python >>> rt = ragged.constant([[1, 2, 3, 4], [5], [], [6, 7, 8, 9], [10]]) >>> rt.bounding_shape() [5, 4] ```

object bounding_shape_dyn(object axis, object name, object out_type)

Returns the tight bounding box shape for this `RaggedTensor`.
Parameters
object axis
An integer scalar or vector indicating which axes to return the bounding box for. If not specified, then the full bounding box is returned.
object name
A name prefix for the returned tensor (optional).
object out_type
`dtype` for the returned tensor. Defaults to `self.row_splits.dtype`.
Returns
object
An integer `Tensor` (`dtype=self.row_splits.dtype`). If `axis` is not specified, then `output` is a vector with `output.shape=[self.shape.ndims]`. If `axis` is a scalar, then the `output` is a scalar. If `axis` is a vector, then `output` is a vector, where `output[i]` is the bounding size for dimension `axis[i]`.

#### Example: ```python >>> rt = ragged.constant([[1, 2, 3, 4], [5], [], [6, 7, 8, 9], [10]]) >>> rt.bounding_shape() [5, 4] ```

ValueTuple<object> nested_row_lengths(string name)

Returns a tuple containing the row_lengths for all ragged dimensions.

`rt.nested_row_lengths()` is a tuple containing the `row_lengths` tensors for all ragged dimensions in `rt`, ordered from outermost to innermost.
Parameters
string name
A name prefix for the returned tensors (optional).
Returns
ValueTuple<object>
A `tuple` of 1-D integer `Tensors`. The length of the tuple is equal to `self.ragged_rank`.

object nested_row_lengths_dyn(object name)

Returns a tuple containing the row_lengths for all ragged dimensions.

`rt.nested_row_lengths()` is a tuple containing the `row_lengths` tensors for all ragged dimensions in `rt`, ordered from outermost to innermost.
Parameters
object name
A name prefix for the returned tensors (optional).
Returns
object
A `tuple` of 1-D integer `Tensors`. The length of the tuple is equal to `self.ragged_rank`.

ValueTuple<object> nested_value_rowids(string name)

Returns a tuple containing the value_rowids for all ragged dimensions.

`rt.nested_value_rowids` is a tuple containing the `value_rowids` tensors for all ragged dimensions in `rt`, ordered from outermost to innermost. In particular, `rt.nested_value_rowids = (rt.value_rowids(),) + value_ids` where:

* `value_ids = ()` if `rt.values` is a `Tensor`. * `value_ids = rt.values.nested_value_rowids` otherwise.
Parameters
string name
A name prefix for the returned tensors (optional).
Returns
ValueTuple<object>
A `tuple` of 1-D integer `Tensor`s.

#### Example:

```python >>> rt = ragged.constant([[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]]) >>> for i, ids in enumerate(rt.nested_value_rowids()): ... print('row ids for dimension %d: %s' % (i+1, ids)) row ids for dimension 1: [0] row ids for dimension 2: [0, 0, 0, 2, 2] row ids for dimension 3: [0, 0, 0, 0, 2, 2, 2, 3] ```

object nested_value_rowids_dyn(object name)

Returns a tuple containing the value_rowids for all ragged dimensions.

`rt.nested_value_rowids` is a tuple containing the `value_rowids` tensors for all ragged dimensions in `rt`, ordered from outermost to innermost. In particular, `rt.nested_value_rowids = (rt.value_rowids(),) + value_ids` where:

* `value_ids = ()` if `rt.values` is a `Tensor`. * `value_ids = rt.values.nested_value_rowids` otherwise.
Parameters
object name
A name prefix for the returned tensors (optional).
Returns
object
A `tuple` of 1-D integer `Tensor`s.

#### Example:

```python >>> rt = ragged.constant([[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]]) >>> for i, ids in enumerate(rt.nested_value_rowids()): ... print('row ids for dimension %d: %s' % (i+1, ids)) row ids for dimension 1: [0] row ids for dimension 2: [0, 0, 0, 2, 2] row ids for dimension 3: [0, 0, 0, 0, 2, 2, 2, 3] ```

object nrows(DType out_type, string name)

Returns the number of rows in this ragged tensor.

I.e., the size of the outermost dimension of the tensor.
Parameters
DType out_type
`dtype` for the returned tensor. Defaults to `self.row_splits.dtype`.
string name
A name prefix for the returned tensor (optional).
Returns
object
A scalar `Tensor` with dtype `out_type`.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.nrows() # rt has 5 rows. 5 ```

object nrows(dtype out_type, string name)

Returns the number of rows in this ragged tensor.

I.e., the size of the outermost dimension of the tensor.
Parameters
dtype out_type
`dtype` for the returned tensor. Defaults to `self.row_splits.dtype`.
string name
A name prefix for the returned tensor (optional).
Returns
object
A scalar `Tensor` with dtype `out_type`.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.nrows() # rt has 5 rows. 5 ```

object nrows(PythonClassContainer out_type, string name)

Returns the number of rows in this ragged tensor.

I.e., the size of the outermost dimension of the tensor.
Parameters
PythonClassContainer out_type
`dtype` for the returned tensor. Defaults to `self.row_splits.dtype`.
string name
A name prefix for the returned tensor (optional).
Returns
object
A scalar `Tensor` with dtype `out_type`.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.nrows() # rt has 5 rows. 5 ```

object nrows_dyn(object out_type, object name)

Returns the number of rows in this ragged tensor.

I.e., the size of the outermost dimension of the tensor.
Parameters
object out_type
`dtype` for the returned tensor. Defaults to `self.row_splits.dtype`.
object name
A name prefix for the returned tensor (optional).
Returns
object
A scalar `Tensor` with dtype `out_type`.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.nrows() # rt has 5 rows. 5 ```

object row_lengths(int axis, string name)

Returns the lengths of the rows in this ragged tensor.

`rt.row_lengths()[i]` indicates the number of values in the `i`th row of `rt`.
Parameters
int axis
An integer constant indicating the axis whose row lengths should be returned.
string name
A name prefix for the returned tensor (optional).
Returns
object
A potentially ragged integer Tensor with shape `self.shape[:axis]`.

object row_lengths_dyn(ImplicitContainer<T> axis, object name)

Returns the lengths of the rows in this ragged tensor.

`rt.row_lengths()[i]` indicates the number of values in the `i`th row of `rt`.
Parameters
ImplicitContainer<T> axis
An integer constant indicating the axis whose row lengths should be returned.
object name
A name prefix for the returned tensor (optional).
Returns
object
A potentially ragged integer Tensor with shape `self.shape[:axis]`.

object row_limits(string name)

Returns the limit indices for rows in this ragged tensor.

These indices specify where the values for each row end in `self.values`. `rt.row_limits(self)` is equal to `rt.row_splits[:-1]`.
Parameters
string name
A name prefix for the returned tensor (optional).
Returns
object
A 1-D integer Tensor with shape `[nrows]`. The returned tensor is nonnegative, and is sorted in ascending order.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.row_limits() # indices of row limits in rt.values tf.Tensor([4, 4, 7, 8, 8]) ```

object row_limits_dyn(object name)

Returns the limit indices for rows in this ragged tensor.

These indices specify where the values for each row end in `self.values`. `rt.row_limits(self)` is equal to `rt.row_splits[:-1]`.
Parameters
object name
A name prefix for the returned tensor (optional).
Returns
object
A 1-D integer Tensor with shape `[nrows]`. The returned tensor is nonnegative, and is sorted in ascending order.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.row_limits() # indices of row limits in rt.values tf.Tensor([4, 4, 7, 8, 8]) ```

object row_starts(string name)

Returns the start indices for rows in this ragged tensor.

These indices specify where the values for each row begin in `self.values`. `rt.row_starts()` is equal to `rt.row_splits[:-1]`.
Parameters
string name
A name prefix for the returned tensor (optional).
Returns
object
A 1-D integer Tensor with shape `[nrows]`. The returned tensor is nonnegative, and is sorted in ascending order.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.row_starts() # indices of row starts in rt.values tf.Tensor([0, 4, 4, 7, 8]) ```

object row_starts_dyn(object name)

Returns the start indices for rows in this ragged tensor.

These indices specify where the values for each row begin in `self.values`. `rt.row_starts()` is equal to `rt.row_splits[:-1]`.
Parameters
object name
A name prefix for the returned tensor (optional).
Returns
object
A 1-D integer Tensor with shape `[nrows]`. The returned tensor is nonnegative, and is sorted in ascending order.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.row_starts() # indices of row starts in rt.values tf.Tensor([0, 4, 4, 7, 8]) ```

SparseTensor to_sparse(string name)

Converts this `RaggedTensor` into a tf.SparseTensor.

Example:
Parameters
string name
A name prefix for the returned tensors (optional).
Returns
SparseTensor
A SparseTensor with the same values as `self`.
Show Example
>>> rt = ragged.constant([[1, 2, 3], [4], [], [5, 6]])
            >>> rt.to_sparse().eval()
            SparseTensorValue(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [3, 1]],
                              values=[1, 2, 3, 4, 5, 6],
                              dense_shape=[4, 3]) 

object to_sparse_dyn(object name)

Converts this `RaggedTensor` into a tf.SparseTensor.

Example:
Parameters
object name
A name prefix for the returned tensors (optional).
Returns
object
A SparseTensor with the same values as `self`.
Show Example
>>> rt = ragged.constant([[1, 2, 3], [4], [], [5, 6]])
            >>> rt.to_sparse().eval()
            SparseTensorValue(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [3, 1]],
                              values=[1, 2, 3, 4, 5, 6],
                              dense_shape=[4, 3]) 

Tensor to_tensor(IGraphNodeBase default_value, string name)

Converts this `RaggedTensor` into a tf.Tensor.

Example:
Parameters
IGraphNodeBase default_value
Value to set for indices not specified in `self`. Defaults to zero. `default_value` must be broadcastable to `self.shape[self.ragged_rank + 1:]`.
string name
A name prefix for the returned tensors (optional).
Returns
Tensor
A `Tensor` with shape `ragged.bounding_shape(self)` and the values specified by the non-empty values in `self`. Empty values are assigned `default_value`.
Show Example
>>> rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
            >>> print rt.to_tensor()
            [[9 8 7]
             [0 0 0]
             [6 5 0]
             [4 0 0]] 

Tensor to_tensor(bool default_value, string name)

Converts this `RaggedTensor` into a tf.Tensor.

Example:
Parameters
bool default_value
Value to set for indices not specified in `self`. Defaults to zero. `default_value` must be broadcastable to `self.shape[self.ragged_rank + 1:]`.
string name
A name prefix for the returned tensors (optional).
Returns
Tensor
A `Tensor` with shape `ragged.bounding_shape(self)` and the values specified by the non-empty values in `self`. Empty values are assigned `default_value`.
Show Example
>>> rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
            >>> print rt.to_tensor()
            [[9 8 7]
             [0 0 0]
             [6 5 0]
             [4 0 0]] 

Tensor to_tensor(string default_value, string name)

Converts this `RaggedTensor` into a tf.Tensor.

Example:
Parameters
string default_value
Value to set for indices not specified in `self`. Defaults to zero. `default_value` must be broadcastable to `self.shape[self.ragged_rank + 1:]`.
string name
A name prefix for the returned tensors (optional).
Returns
Tensor
A `Tensor` with shape `ragged.bounding_shape(self)` and the values specified by the non-empty values in `self`. Empty values are assigned `default_value`.
Show Example
>>> rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
            >>> print rt.to_tensor()
            [[9 8 7]
             [0 0 0]
             [6 5 0]
             [4 0 0]] 

Tensor to_tensor(int default_value, string name)

Converts this `RaggedTensor` into a tf.Tensor.

Example:
Parameters
int default_value
Value to set for indices not specified in `self`. Defaults to zero. `default_value` must be broadcastable to `self.shape[self.ragged_rank + 1:]`.
string name
A name prefix for the returned tensors (optional).
Returns
Tensor
A `Tensor` with shape `ragged.bounding_shape(self)` and the values specified by the non-empty values in `self`. Empty values are assigned `default_value`.
Show Example
>>> rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
            >>> print rt.to_tensor()
            [[9 8 7]
             [0 0 0]
             [6 5 0]
             [4 0 0]] 

Tensor to_tensor(IEnumerable<int> default_value, string name)

Converts this `RaggedTensor` into a tf.Tensor.

Example:
Parameters
IEnumerable<int> default_value
Value to set for indices not specified in `self`. Defaults to zero. `default_value` must be broadcastable to `self.shape[self.ragged_rank + 1:]`.
string name
A name prefix for the returned tensors (optional).
Returns
Tensor
A `Tensor` with shape `ragged.bounding_shape(self)` and the values specified by the non-empty values in `self`. Empty values are assigned `default_value`.
Show Example
>>> rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
            >>> print rt.to_tensor()
            [[9 8 7]
             [0 0 0]
             [6 5 0]
             [4 0 0]] 

object to_tensor_dyn(object default_value, object name)

Converts this `RaggedTensor` into a tf.Tensor.

Example:
Parameters
object default_value
Value to set for indices not specified in `self`. Defaults to zero. `default_value` must be broadcastable to `self.shape[self.ragged_rank + 1:]`.
object name
A name prefix for the returned tensors (optional).
Returns
object
A `Tensor` with shape `ragged.bounding_shape(self)` and the values specified by the non-empty values in `self`. Empty values are assigned `default_value`.
Show Example
>>> rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
            >>> print rt.to_tensor()
            [[9 8 7]
             [0 0 0]
             [6 5 0]
             [4 0 0]] 

object value_rowids(string name)

Returns the row indices for the `values` in this ragged tensor.

`rt.value_rowids()` corresponds one-to-one with the outermost dimension of `rt.values`, and specifies the row containing each value. In particular, the row `rt[row]` consists of the values `rt.values[j]` where `rt.value_rowids()[j] == row`.
Parameters
string name
A name prefix for the returned tensor (optional).
Returns
object
A 1-D integer `Tensor` with shape `self.values.shape[:1]`. The returned tensor is nonnegative, and is sorted in ascending order.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.value_rowids() tf.Tensor([0, 0, 0, 0, 2, 2, 2, 3]) # corresponds 1:1 with rt.values ```

object value_rowids_dyn(object name)

Returns the row indices for the `values` in this ragged tensor.

`rt.value_rowids()` corresponds one-to-one with the outermost dimension of `rt.values`, and specifies the row containing each value. In particular, the row `rt[row]` consists of the values `rt.values[j]` where `rt.value_rowids()[j] == row`.
Parameters
object name
A name prefix for the returned tensor (optional).
Returns
object
A 1-D integer `Tensor` with shape `self.values.shape[:1]`. The returned tensor is nonnegative, and is sorted in ascending order.

#### Example: ```python >>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []]) >>> rt.values tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6]) >>> rt.value_rowids() tf.Tensor([0, 0, 0, 0, 2, 2, 2, 3]) # corresponds 1:1 with rt.values ```

RaggedTensor with_flat_values(IGraphNodeBase new_values)

Returns a copy of `self` with `flat_values` replaced by `new_value`.

Preserves cached row-partitioning tensors such as `self.cached_nrows` and `self.cached_value_rowids` if they have values.
Parameters
IGraphNodeBase new_values
Potentially ragged tensor that should replace `self.flat_values`. Must have `rank > 0`, and must have the same number of rows as `self.flat_values`.
Returns
RaggedTensor
A `RaggedTensor`. `result.rank = self.ragged_rank + new_values.rank`. `result.ragged_rank = self.ragged_rank + new_values.ragged_rank`.

RaggedTensor with_flat_values(RaggedTensor new_values)

Returns a copy of `self` with `flat_values` replaced by `new_value`.

Preserves cached row-partitioning tensors such as `self.cached_nrows` and `self.cached_value_rowids` if they have values.
Parameters
RaggedTensor new_values
Potentially ragged tensor that should replace `self.flat_values`. Must have `rank > 0`, and must have the same number of rows as `self.flat_values`.
Returns
RaggedTensor
A `RaggedTensor`. `result.rank = self.ragged_rank + new_values.rank`. `result.ragged_rank = self.ragged_rank + new_values.ragged_rank`.

object with_flat_values_dyn(object new_values)

Returns a copy of `self` with `flat_values` replaced by `new_value`.

Preserves cached row-partitioning tensors such as `self.cached_nrows` and `self.cached_value_rowids` if they have values.
Parameters
object new_values
Potentially ragged tensor that should replace `self.flat_values`. Must have `rank > 0`, and must have the same number of rows as `self.flat_values`.
Returns
object
A `RaggedTensor`. `result.rank = self.ragged_rank + new_values.rank`. `result.ragged_rank = self.ragged_rank + new_values.ragged_rank`.

RaggedTensor with_row_splits_dtype(DType dtype)

Returns a copy of this RaggedTensor with the given `row_splits` dtype.

For RaggedTensors with multiple ragged dimensions, the `row_splits` for all nested `RaggedTensor` objects are cast to the given dtype.
Parameters
DType dtype
The dtype for `row_splits`. One of tf.int32 or tf.int64.
Returns
RaggedTensor
A copy of this RaggedTensor, with the `row_splits` cast to the given type.

object with_row_splits_dtype_dyn(object dtype)

Returns a copy of this RaggedTensor with the given `row_splits` dtype.

For RaggedTensors with multiple ragged dimensions, the `row_splits` for all nested `RaggedTensor` objects are cast to the given dtype.
Parameters
object dtype
The dtype for `row_splits`. One of tf.int32 or tf.int64.
Returns
object
A copy of this RaggedTensor, with the `row_splits` cast to the given type.

RaggedTensor with_values(IEnumerable<int> new_values)

Returns a copy of `self` with `values` replaced by `new_value`.

Preserves cached row-partitioning tensors such as `self.cached_nrows` and `self.cached_value_rowids` if they have values.
Parameters
IEnumerable<int> new_values
Potentially ragged tensor to use as the `values` for the returned `RaggedTensor`. Must have `rank > 0`, and must have the same number of rows as `self.values`.
Returns
RaggedTensor
A `RaggedTensor`. `result.rank = 1 + new_values.rank`. `result.ragged_rank = 1 + new_values.ragged_rank`

RaggedTensor with_values(RaggedTensor new_values)

Returns a copy of `self` with `values` replaced by `new_value`.

Preserves cached row-partitioning tensors such as `self.cached_nrows` and `self.cached_value_rowids` if they have values.
Parameters
RaggedTensor new_values
Potentially ragged tensor to use as the `values` for the returned `RaggedTensor`. Must have `rank > 0`, and must have the same number of rows as `self.values`.
Returns
RaggedTensor
A `RaggedTensor`. `result.rank = 1 + new_values.rank`. `result.ragged_rank = 1 + new_values.ragged_rank`

RaggedTensor with_values(IGraphNodeBase new_values)

Returns a copy of `self` with `values` replaced by `new_value`.

Preserves cached row-partitioning tensors such as `self.cached_nrows` and `self.cached_value_rowids` if they have values.
Parameters
IGraphNodeBase new_values
Potentially ragged tensor to use as the `values` for the returned `RaggedTensor`. Must have `rank > 0`, and must have the same number of rows as `self.values`.
Returns
RaggedTensor
A `RaggedTensor`. `result.rank = 1 + new_values.rank`. `result.ragged_rank = 1 + new_values.ragged_rank`

object with_values_dyn(object new_values)

Returns a copy of `self` with `values` replaced by `new_value`.

Preserves cached row-partitioning tensors such as `self.cached_nrows` and `self.cached_value_rowids` if they have values.
Parameters
object new_values
Potentially ragged tensor to use as the `values` for the returned `RaggedTensor`. Must have `rank > 0`, and must have the same number of rows as `self.values`.
Returns
object
A `RaggedTensor`. `result.rank = 1 + new_values.rank`. `result.ragged_rank = 1 + new_values.ragged_rank`

Public static methods

object from_nested_row_lengths_dyn<TClass>(object flat_values, object nested_row_lengths, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` from a nested list of `row_lengths` tensors.

Equivalent to:
Parameters
object flat_values
A potentially ragged tensor.
object nested_row_lengths
A list of 1-D integer tensors. The `i`th tensor is used as the `row_lengths` for the `i`th ragged dimension.
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor` (or `flat_values` if `nested_row_lengths` is empty).
Show Example
result = flat_values
            for row_lengths in reversed(nested_row_lengths):
              result = from_row_lengths(result, row_lengths) 

TClass from_nested_row_lengths<TClass>(IGraphNodeBase flat_values, IEnumerable<object> nested_row_lengths, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_lengths` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IEnumerable<object> nested_row_lengths
A list of 1-D integer tensors. The `i`th tensor is used as the `row_lengths` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_lengths` is empty).
Show Example
result = flat_values
            for row_lengths in reversed(nested_row_lengths):
              result = from_row_lengths(result, row_lengths) 

TClass from_nested_row_lengths<TClass>(IGraphNodeBase flat_values, ValueTuple<IEnumerable<object>, object> nested_row_lengths, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_lengths` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
ValueTuple<IEnumerable<object>, object> nested_row_lengths
A list of 1-D integer tensors. The `i`th tensor is used as the `row_lengths` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_lengths` is empty).
Show Example
result = flat_values
            for row_lengths in reversed(nested_row_lengths):
              result = from_row_lengths(result, row_lengths) 

TClass from_nested_row_lengths<TClass>(IGraphNodeBase flat_values, IGraphNodeBase nested_row_lengths, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_lengths` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IGraphNodeBase nested_row_lengths
A list of 1-D integer tensors. The `i`th tensor is used as the `row_lengths` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_lengths` is empty).
Show Example
result = flat_values
            for row_lengths in reversed(nested_row_lengths):
              result = from_row_lengths(result, row_lengths) 

object from_nested_row_splits_dyn<TClass>(object flat_values, object nested_row_splits, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
object flat_values
A potentially ragged tensor.
object nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(IEnumerable<PythonClassContainer> flat_values, IGraphNodeBase nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
IEnumerable<PythonClassContainer> flat_values
A potentially ragged tensor.
IGraphNodeBase nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(CompositeTensor flat_values, IEnumerable<object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
CompositeTensor flat_values
A potentially ragged tensor.
IEnumerable<object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(CompositeTensor flat_values, IGraphNodeBase nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
CompositeTensor flat_values
A potentially ragged tensor.
IGraphNodeBase nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(IEnumerable<PythonClassContainer> flat_values, ValueTuple<IEnumerable<int>, object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
IEnumerable<PythonClassContainer> flat_values
A potentially ragged tensor.
ValueTuple<IEnumerable<int>, object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(IGraphNodeBase flat_values, IEnumerable<object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IEnumerable<object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(IGraphNodeBase flat_values, ValueTuple<IEnumerable<int>, object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
ValueTuple<IEnumerable<int>, object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(IGraphNodeBase flat_values, IGraphNodeBase nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IGraphNodeBase nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(PythonClassContainer flat_values, IEnumerable<object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
PythonClassContainer flat_values
A potentially ragged tensor.
IEnumerable<object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(CompositeTensor flat_values, ValueTuple<IEnumerable<int>, object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
CompositeTensor flat_values
A potentially ragged tensor.
ValueTuple<IEnumerable<int>, object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(PythonClassContainer flat_values, IGraphNodeBase nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
PythonClassContainer flat_values
A potentially ragged tensor.
IGraphNodeBase nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(IEnumerable<PythonClassContainer> flat_values, IEnumerable<object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
IEnumerable<PythonClassContainer> flat_values
A potentially ragged tensor.
IEnumerable<object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

TClass from_nested_row_splits<TClass>(PythonClassContainer flat_values, ValueTuple<IEnumerable<int>, object> nested_row_splits, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `row_splits` tensors.

Equivalent to:
Parameters
PythonClassContainer flat_values
A potentially ragged tensor.
ValueTuple<IEnumerable<int>, object> nested_row_splits
A list of 1-D integer tensors. The `i`th tensor is used as the `row_splits` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_row_splits` is empty).
Show Example
result = flat_values
            for row_splits in reversed(nested_row_splits):
              result = from_row_splits(result, row_splits) 

object from_nested_value_rowids_dyn<TClass>(object flat_values, object nested_value_rowids, object nested_nrows, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
object flat_values
A potentially ragged tensor.
object nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
object nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IGraphNodeBase flat_values, IGraphNodeBase nested_value_rowids, IGraphNodeBase nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IGraphNodeBase nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IGraphNodeBase nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IEnumerable<int> flat_values, IEnumerable<IGraphNodeBase> nested_value_rowids, IEnumerable<IGraphNodeBase> nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IEnumerable<int> flat_values
A potentially ragged tensor.
IEnumerable<IGraphNodeBase> nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IEnumerable<IGraphNodeBase> nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IEnumerable<int> flat_values, IEnumerable<IGraphNodeBase> nested_value_rowids, IGraphNodeBase nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IEnumerable<int> flat_values
A potentially ragged tensor.
IEnumerable<IGraphNodeBase> nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IGraphNodeBase nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IEnumerable<int> flat_values, IGraphNodeBase nested_value_rowids, IEnumerable<IGraphNodeBase> nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IEnumerable<int> flat_values
A potentially ragged tensor.
IGraphNodeBase nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IEnumerable<IGraphNodeBase> nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IGraphNodeBase flat_values, IEnumerable<IGraphNodeBase> nested_value_rowids, IEnumerable<IGraphNodeBase> nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IEnumerable<IGraphNodeBase> nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IEnumerable<IGraphNodeBase> nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IEnumerable<int> flat_values, IGraphNodeBase nested_value_rowids, IGraphNodeBase nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IEnumerable<int> flat_values
A potentially ragged tensor.
IGraphNodeBase nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IGraphNodeBase nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IGraphNodeBase flat_values, IEnumerable<IGraphNodeBase> nested_value_rowids, IGraphNodeBase nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IEnumerable<IGraphNodeBase> nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IGraphNodeBase nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

TClass from_nested_value_rowids<TClass>(IGraphNodeBase flat_values, IGraphNodeBase nested_value_rowids, IEnumerable<IGraphNodeBase> nested_nrows, string name, bool validate)

Creates a `RaggedTensor` from a nested list of `value_rowids` tensors.

Equivalent to:
Parameters
IGraphNodeBase flat_values
A potentially ragged tensor.
IGraphNodeBase nested_value_rowids
A list of 1-D integer tensors. The `i`th tensor is used as the `value_rowids` for the `i`th ragged dimension.
IEnumerable<IGraphNodeBase> nested_nrows
A list of integer scalars. The `i`th scalar is used as the `nrows` for the `i`th ragged dimension.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor` (or `flat_values` if `nested_value_rowids` is empty).
Show Example
result = flat_values
            for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
              result = from_value_rowids(result, rowids, nrows) 

object from_row_lengths_dyn<TClass>(object values, object row_lengths, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
object row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(IEnumerable<int> values, IGraphNodeBase row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IEnumerable<int> values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(string values, IGraphNodeBase row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
string values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(string values, IEnumerable<int> row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
string values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(object values, IGraphNodeBase row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(object values, IEnumerable<int> row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(RaggedTensor values, IEnumerable<int> row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(IGraphNodeBase values, IGraphNodeBase row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(DType values, IGraphNodeBase row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
DType values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(RaggedTensor values, IGraphNodeBase row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(int values, IEnumerable<int> row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
int values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(int values, IGraphNodeBase row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
int values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(IEnumerable<int> values, IEnumerable<int> row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IEnumerable<int> values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(DType values, IEnumerable<int> row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
DType values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

TClass from_row_lengths<TClass>(IGraphNodeBase values, IEnumerable<int> row_lengths, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_lengths`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_lengths
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. `sum(row_lengths)` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_lengths( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_lengths=[4, 0, 3, 1, 0])) ```
Show Example
result = [[values.pop(0) for i in range(length)]
                      for length in row_lengths] 

object from_row_limits_dyn<TClass>(object values, object row_limits, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` with rows partitioned by `row_limits`.

Equivalent to: `from_row_splits(values, concat([0, row_limits]))`.
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
object row_limits
A 1-D integer tensor with shape `[nrows]`. Must be sorted in ascending order. If `nrows>0`, then `row_limits[-1]` must be `nvals`.
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_limits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_limits=[4, 4, 7, 8, 8])) ```

TClass from_row_limits<TClass>(IEnumerable<int> values, IGraphNodeBase row_limits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_limits`.

Equivalent to: `from_row_splits(values, concat([0, row_limits]))`.
Parameters
IEnumerable<int> values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_limits
A 1-D integer tensor with shape `[nrows]`. Must be sorted in ascending order. If `nrows>0`, then `row_limits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_limits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_limits=[4, 4, 7, 8, 8])) ```

TClass from_row_limits<TClass>(IEnumerable<int> values, IEnumerable<int> row_limits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_limits`.

Equivalent to: `from_row_splits(values, concat([0, row_limits]))`.
Parameters
IEnumerable<int> values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_limits
A 1-D integer tensor with shape `[nrows]`. Must be sorted in ascending order. If `nrows>0`, then `row_limits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_limits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_limits=[4, 4, 7, 8, 8])) ```

TClass from_row_limits<TClass>(IGraphNodeBase values, IGraphNodeBase row_limits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_limits`.

Equivalent to: `from_row_splits(values, concat([0, row_limits]))`.
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_limits
A 1-D integer tensor with shape `[nrows]`. Must be sorted in ascending order. If `nrows>0`, then `row_limits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_limits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_limits=[4, 4, 7, 8, 8])) ```

TClass from_row_limits<TClass>(IGraphNodeBase values, IEnumerable<int> row_limits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_limits`.

Equivalent to: `from_row_splits(values, concat([0, row_limits]))`.
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_limits
A 1-D integer tensor with shape `[nrows]`. Must be sorted in ascending order. If `nrows>0`, then `row_limits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_limits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_limits=[4, 4, 7, 8, 8])) ```

object from_row_splits_dyn<TClass>(object values, object row_splits, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` with rows partitioned by `row_splits`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
object row_splits
A 1-D integer tensor with shape `[nrows+1]`. Must not be empty, and must be sorted in ascending order. `row_splits[0]` must be zero and `row_splits[-1]` must be `nvals`.
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [values[row_splits[i]:row_splits[i + 1]]
                      for i in range(len(row_splits) - 1)] 

TClass from_row_splits<TClass>(object values, ValueTuple<IEnumerable<object>, object> row_splits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_splits`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
ValueTuple<IEnumerable<object>, object> row_splits
A 1-D integer tensor with shape `[nrows+1]`. Must not be empty, and must be sorted in ascending order. `row_splits[0]` must be zero and `row_splits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [values[row_splits[i]:row_splits[i + 1]]
                      for i in range(len(row_splits) - 1)] 

TClass from_row_splits<TClass>(object values, TensorSpec row_splits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_splits`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
TensorSpec row_splits
A 1-D integer tensor with shape `[nrows+1]`. Must not be empty, and must be sorted in ascending order. `row_splits[0]` must be zero and `row_splits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [values[row_splits[i]:row_splits[i + 1]]
                      for i in range(len(row_splits) - 1)] 

TClass from_row_splits<TClass>(object values, IGraphNodeBase row_splits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_splits`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_splits
A 1-D integer tensor with shape `[nrows+1]`. Must not be empty, and must be sorted in ascending order. `row_splits[0]` must be zero and `row_splits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [values[row_splits[i]:row_splits[i + 1]]
                      for i in range(len(row_splits) - 1)] 

TClass from_row_splits<TClass>(object values, ndarray row_splits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_splits`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
ndarray row_splits
A 1-D integer tensor with shape `[nrows+1]`. Must not be empty, and must be sorted in ascending order. `row_splits[0]` must be zero and `row_splits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [values[row_splits[i]:row_splits[i + 1]]
                      for i in range(len(row_splits) - 1)] 

TClass from_row_splits<TClass>(object values, IEnumerable<int> row_splits, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_splits`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_splits
A 1-D integer tensor with shape `[nrows+1]`. Must not be empty, and must be sorted in ascending order. `row_splits[0]` must be zero and `row_splits[-1]` must be `nvals`.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [values[row_splits[i]:row_splits[i + 1]]
                      for i in range(len(row_splits) - 1)] 

object from_row_starts_dyn<TClass>(object values, object row_starts, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
object row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(RaggedTensor values, IGraphNodeBase row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(IGraphNodeBase values, IEnumerable<int> row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(PythonClassContainer values, IEnumerable<int> row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
PythonClassContainer values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(int values, IGraphNodeBase row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
int values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(PythonClassContainer values, IGraphNodeBase row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
PythonClassContainer values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(IGraphNodeBase values, IGraphNodeBase row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(TestCase values, IEnumerable<int> row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
TestCase values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(int values, IEnumerable<int> row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
int values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(TestCase values, IGraphNodeBase row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
TestCase values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(IEnumerable<int> values, IEnumerable<int> row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
IEnumerable<int> values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(IEnumerable<int> values, IGraphNodeBase row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
IEnumerable<int> values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

TClass from_row_starts<TClass>(RaggedTensor values, IEnumerable<int> row_starts, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `row_starts`.

Equivalent to: `from_row_splits(values, concat([row_starts, nvals]))`.
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<int> row_starts
A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero.
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.

#### Example: ```python >>> print(tf.RaggedTensor.from_row_starts( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_starts=[0, 4, 4, 7, 8])) ```

object from_sparse_dyn<TClass>(object st_input, object name, ImplicitContainer<T> row_splits_dtype)

Converts a 2D tf.SparseTensor to a `RaggedTensor`.

Each row of the `output` `RaggedTensor` will contain the explicit values from the same row in `st_input`. `st_input` must be ragged-right. If not it is not ragged-right, then an error will be generated.

Example: Currently, only two-dimensional `SparseTensors` are supported.
Parameters
object st_input
The sparse tensor to convert. Must have rank 2.
object name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
object
A `RaggedTensor` with the same values as `st_input`. `output.ragged_rank = rank(st_input) - 1`. `output.shape = [st_input.dense_shape[0], None]`.
Show Example
>>> st = SparseTensor(indices=[[0, 1], [0, 2], [0, 3], [1, 0], [3, 0]],
           ...                   values=[1, 2, 3, 4, 5],
           ...                   dense_shape=[4, 3])
            >>> rt.RaggedTensor.from_sparse(st).eval().tolist()
            [[1, 2, 3], [4], [], [5]] 

TClass from_sparse<TClass>(SparseTensor st_input, string name, ImplicitContainer<T> row_splits_dtype)

Converts a 2D tf.SparseTensor to a `RaggedTensor`.

Each row of the `output` `RaggedTensor` will contain the explicit values from the same row in `st_input`. `st_input` must be ragged-right. If not it is not ragged-right, then an error will be generated.

Example: Currently, only two-dimensional `SparseTensors` are supported.
Parameters
SparseTensor st_input
The sparse tensor to convert. Must have rank 2.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the same values as `st_input`. `output.ragged_rank = rank(st_input) - 1`. `output.shape = [st_input.dense_shape[0], None]`.
Show Example
>>> st = SparseTensor(indices=[[0, 1], [0, 2], [0, 3], [1, 0], [3, 0]],
           ...                   values=[1, 2, 3, 4, 5],
           ...                   dense_shape=[4, 3])
            >>> rt.RaggedTensor.from_sparse(st).eval().tolist()
            [[1, 2, 3], [4], [], [5]] 

object from_tensor_dyn<TClass>(object tensor, object lengths, object padding, ImplicitContainer<T> ragged_rank, object name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
object lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
object padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
ImplicitContainer<T> ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
object name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
object
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IEnumerable<int> lengths, int padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IGraphNodeBase lengths, IGraphNodeBase padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IEnumerable<int> lengths, IGraphNodeBase padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IEnumerable<int> lengths, int padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IEnumerable<int> lengths, int padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IEnumerable<int> lengths, IGraphNodeBase padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IEnumerable<int> lengths, IGraphNodeBase padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, ValueTuple<IEnumerable<object>, object> lengths, int padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IEnumerable<int> lengths, IGraphNodeBase padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, ValueTuple<IEnumerable<object>, object> lengths, int padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, ValueTuple<IEnumerable<object>, object> lengths, IGraphNodeBase padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IEnumerable<int> lengths, int padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IEnumerable<int> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, ValueTuple<IEnumerable<object>, object> lengths, IGraphNodeBase padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IGraphNodeBase lengths, int padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IGraphNodeBase lengths, IGraphNodeBase padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IGraphNodeBase lengths, IGraphNodeBase padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, ValueTuple<IEnumerable<object>, object> lengths, int padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(object tensor, IGraphNodeBase lengths, int padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
object tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, ValueTuple<IEnumerable<object>, object> lengths, int padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IGraphNodeBase lengths, int padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IGraphNodeBase lengths, int padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
int padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, ValueTuple<IEnumerable<object>, object> lengths, IGraphNodeBase padding, int ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
int ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, ValueTuple<IEnumerable<object>, object> lengths, IGraphNodeBase padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
ValueTuple<IEnumerable<object>, object> lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

TClass from_tensor<TClass>(IEnumerable<IGraphNodeBase> tensor, IGraphNodeBase lengths, IGraphNodeBase padding, Dimension ragged_rank, string name, ImplicitContainer<T> row_splits_dtype)

Converts a tf.Tensor into a `RaggedTensor`.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If `lengths` is specified, then the output tensor will satisfy `output[row] = tensor[row][:lengths[row]]`. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If `padding` is specified, then any row *suffix* consisting entirely of `padding` will be excluded from the returned `RaggedTensor`. If neither `lengths` nor `padding` is specified, then the returned `RaggedTensor` will have no absent/default values.

Examples:
Parameters
IEnumerable<IGraphNodeBase> tensor
The `Tensor` to convert. Must have rank `ragged_rank + 1` or higher.
IGraphNodeBase lengths
An optional set of row lengths, specified using a 1-D integer `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows in `tensor`). If specified, then `output[row]` will contain `tensor[row][:lengths[row]]`. Negative lengths are treated as zero. You may optionally pass a list or tuple of lengths to this argument, which will be used as nested row lengths to construct a ragged tensor with multiple ragged dimensions.
IGraphNodeBase padding
An optional padding value. If specified, then any row suffix consisting entirely of `padding` will be excluded from the returned RaggedTensor. `padding` is a `Tensor` with the same dtype as `tensor` and with `shape=tensor.shape[ragged_rank + 1:]`.
Dimension ragged_rank
Integer specifying the ragged rank for the returned `RaggedTensor`. Must be greater than zero.
string name
A name prefix for the returned tensors (optional).
ImplicitContainer<T> row_splits_dtype
`dtype` for the returned `RaggedTensor`'s `row_splits` tensor. One of tf.int32 or tf.int64.
Returns
TClass
A `RaggedTensor` with the specified `ragged_rank`. The shape of the returned ragged tensor is compatible with the shape of `tensor`.
Show Example
>>> dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
            >>> tf.RaggedTensor.from_tensor(dt)
            
            >>> tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
             

>>> tf.RaggedTensor.from_tensor(dt, padding=0)

>>> dt = tf.constant([[[5, 0], [7, 0], [0, 0]], [[0, 0], [3, 0], [0, 0]], [[6, 0], [0, 0], [0, 0]]]) >>> tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))

object from_value_rowids_dyn<TClass>(object values, object value_rowids, object nrows, object name, ImplicitContainer<T> validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
object value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
object name
A name prefix for the RaggedTensor (optional).
ImplicitContainer<T> validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
object
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IEnumerable<IGraphNodeBase> values, IGraphNodeBase value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IEnumerable<IGraphNodeBase> values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IGraphNodeBase values, IndexedSlices value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IndexedSlices value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(object values, PythonClassContainer value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
PythonClassContainer value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IEnumerable<IGraphNodeBase> values, PythonClassContainer value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IEnumerable<IGraphNodeBase> values
A potentially ragged tensor with shape `[nvals,...]`.
PythonClassContainer value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IEnumerable<IGraphNodeBase> values, int value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IEnumerable<IGraphNodeBase> values
A potentially ragged tensor with shape `[nvals,...]`.
int value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IEnumerable<IGraphNodeBase> values, IEnumerable<object> value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IEnumerable<IGraphNodeBase> values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<object> value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IEnumerable<IGraphNodeBase> values, IndexedSlices value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IEnumerable<IGraphNodeBase> values
A potentially ragged tensor with shape `[nvals,...]`.
IndexedSlices value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IGraphNodeBase values, int value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
int value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IGraphNodeBase values, IEnumerable<PythonClassContainer> value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<PythonClassContainer> value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(RaggedTensor values, IEnumerable<PythonClassContainer> value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<PythonClassContainer> value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(RaggedTensor values, IndexedSlices value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
IndexedSlices value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(object values, IGraphNodeBase value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(RaggedTensor values, int value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
int value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(object values, int value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
int value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(object values, IndexedSlices value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
IndexedSlices value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(RaggedTensor values, IGraphNodeBase value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IGraphNodeBase values, PythonClassContainer value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
PythonClassContainer value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(object values, IEnumerable<PythonClassContainer> value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
object values
A potentially ragged tensor with shape `[nvals,...]`.
IEnumerable<PythonClassContainer> value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(RaggedTensor values, PythonClassContainer value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
RaggedTensor values
A potentially ragged tensor with shape `[nvals,...]`.
PythonClassContainer value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

TClass from_value_rowids<TClass>(IGraphNodeBase values, IGraphNodeBase value_rowids, object nrows, string name, bool validate)

Creates a `RaggedTensor` with rows partitioned by `value_rowids`.

The returned `RaggedTensor` corresponds with the python list defined by:
Parameters
IGraphNodeBase values
A potentially ragged tensor with shape `[nvals,...]`.
IGraphNodeBase value_rowids
A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
object nrows
An integer scalar specifying the number of rows. This should be specified if the `RaggedTensor` may containing empty training rows. Must be greater than `value_rowids[-1]` (or zero if `value_rowids` is empty). Defaults to `value_rowids[-1]` (or zero if `value_rowids` is empty).
string name
A name prefix for the RaggedTensor (optional).
bool validate
If true, then use assertions to check that the arguments form a valid `RaggedTensor`.
Returns
TClass
A `RaggedTensor`. `result.rank = values.rank + 1`. `result.ragged_rank = values.ragged_rank + 1`.
Show Example
result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
                      for row in range(nrows)] 

Public properties

object dtype get;

The `DType` of values in this tensor.

object dtype_dyn get;

The `DType` of values in this tensor.

Tensor flat_values get;

The innermost `values` tensor for this ragged tensor.

Concretely, if `rt.values` is a `Tensor`, then `rt.flat_values` is `rt.values`; otherwise, `rt.flat_values` is `rt.values.flat_values`.

Conceptually, `flat_values` is the tensor formed by flattening the outermost dimension and all of the ragged dimensions into a single dimension.

`rt.flat_values.shape = [nvals] + rt.shape[rt.ragged_rank + 1:]` (where `nvals` is the number of items in the flattened dimensions).

object flat_values_dyn get;

The innermost `values` tensor for this ragged tensor.

Concretely, if `rt.values` is a `Tensor`, then `rt.flat_values` is `rt.values`; otherwise, `rt.flat_values` is `rt.values.flat_values`.

Conceptually, `flat_values` is the tensor formed by flattening the outermost dimension and all of the ragged dimensions into a single dimension.

`rt.flat_values.shape = [nvals] + rt.shape[rt.ragged_rank + 1:]` (where `nvals` is the number of items in the flattened dimensions).

object Item get;

ValueTuple<object> nested_row_splits get;

A tuple containing the row_splits for all ragged dimensions.

`rt.nested_row_splits` is a tuple containing the `row_splits` tensors for all ragged dimensions in `rt`, ordered from outermost to innermost. In particular, `rt.nested_row_splits = (rt.row_splits,) + value_splits` where:

* `value_splits = ()` if `rt.values` is a `Tensor`. * `value_splits = rt.values.nested_row_splits` otherwise.

object nested_row_splits_dyn get;

A tuple containing the row_splits for all ragged dimensions.

`rt.nested_row_splits` is a tuple containing the `row_splits` tensors for all ragged dimensions in `rt`, ordered from outermost to innermost. In particular, `rt.nested_row_splits = (rt.row_splits,) + value_splits` where:

* `value_splits = ()` if `rt.values` is a `Tensor`. * `value_splits = rt.values.nested_row_splits` otherwise.

object PythonObject get;

int ragged_rank get;

The number of ragged dimensions in this ragged tensor.

object ragged_rank_dyn get;

The number of ragged dimensions in this ragged tensor.

object row_splits get;

The row-split indices for this ragged tensor's `values`.

`rt.row_splits` specifies where the values for each row begin and end in `rt.values`. In particular, the values for row `rt[i]` are stored in the slice `rt.values[rt.row_splits[i]:rt.row_splits[i+1]]`.

object row_splits_dyn get;

The row-split indices for this ragged tensor's `values`.

`rt.row_splits` specifies where the values for each row begin and end in `rt.values`. In particular, the values for row `rt[i]` are stored in the slice `rt.values[rt.row_splits[i]:rt.row_splits[i+1]]`.

TensorShape shape get;

The statically known shape of this ragged tensor.

object shape_dyn get;

The statically known shape of this ragged tensor.

object values get;

The concatenated rows for this ragged tensor.

`rt.values` is a potentially ragged tensor formed by flattening the two outermost dimensions of `rt` into a single dimension.

`rt.values.shape = [nvals] + rt.shape[2:]` (where `nvals` is the number of items in the outer two dimensions of `rt`).

`rt.ragged_rank = self.ragged_rank - 1`

object values_dyn get;

The concatenated rows for this ragged tensor.

`rt.values` is a potentially ragged tensor formed by flattening the two outermost dimensions of `rt` into a single dimension.

`rt.values.shape = [nvals] + rt.shape[2:]` (where `nvals` is the number of items in the outer two dimensions of `rt`).

`rt.ragged_rank = self.ragged_rank - 1`