Type BatchNormalization
Namespace tensorflow.layers
Parent BatchNormalization
Interfaces IBatchNormalization
Batch Normalization layer from http://arxiv.org/abs/1502.03167. "Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift" Sergey Ioffe, Christian Szegedy Keras APIs handle BatchNormalization updates to the moving_mean and
moving_variance as part of their `fit()` and `evaluate()` loops. However, if a
custom training loop is used with an instance of `Model`, these updates need
to be explicitly included. Here's a simple example of how it can be done:
Show Example
# model is an instance of Model that contains BatchNormalization layer. update_ops = model.get_updates_for(None) + model.get_updates_for(features) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops])
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- adjustment
- axis
- beta
- beta_constraint
- beta_initializer
- beta_regularizer
- built
- center
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- epsilon
- fused
- gamma
- gamma_constraint
- gamma_initializer
- gamma_regularizer
- graph
- graph_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- momentum
- moving_mean
- moving_mean_initializer
- moving_stddev
- moving_variance
- moving_variance_initializer
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- renorm
- renorm_clipping
- renorm_mean
- renorm_momentum
- renorm_stddev
- scale
- scope_name
- scope_name_dyn
- stateful
- submodules
- submodules_dyn
- supports_masking
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- virtual_batch_size
- weights
- weights_dyn
Public static methods
BatchNormalization NewDyn(ImplicitContainer<T> axis, ImplicitContainer<T> momentum, ImplicitContainer<T> epsilon, ImplicitContainer<T> center, ImplicitContainer<T> scale, ImplicitContainer<T> beta_initializer, ImplicitContainer<T> gamma_initializer, ImplicitContainer<T> moving_mean_initializer, ImplicitContainer<T> moving_variance_initializer, object beta_regularizer, object gamma_regularizer, object beta_constraint, object gamma_constraint, ImplicitContainer<T> renorm, object renorm_clipping, ImplicitContainer<T> renorm_momentum, object fused, ImplicitContainer<T> trainable, object virtual_batch_size, object adjustment, object name, IDictionary<string, object> kwargs)
Public properties
PythonFunctionContainer activity_regularizer get; set;
object activity_regularizer_dyn get; set;
object adjustment get; set;
object axis get; set;
object beta get; set;
object beta_constraint get; set;
object beta_initializer get; set;
object beta_regularizer get; set;
bool built get; set;
bool center get; set;
object dtype get;
object dtype_dyn get;
bool dynamic get;
object dynamic_dyn get;
double epsilon get; set;
Nullable<bool> fused get; set;
object gamma get; set;
object gamma_constraint get; set;
object gamma_initializer get; set;
object gamma_regularizer get; set;
object graph get;
DEPRECATED FUNCTION Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Stop using this property because tf.layers layers no longer track their graph.
object graph_dyn get;
DEPRECATED FUNCTION Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Stop using this property because tf.layers layers no longer track their graph.