Type AdagradParameters
Namespace tensorflow.tpu.experimental
Parent _OptimizationParameters
Interfaces IAdagradParameters
Optimization parameters for Adagrad with TPU embeddings. Pass this to
tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the
`optimization_parameters` argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details. ```
estimator = tf.estimator.tpu.TPUEstimator(
...
embedding_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
...
optimization_parameters=tf.tpu.experimental.AdagradParameters(0.1),
...))
```
Methods
Properties
Public static methods
AdagradParameters NewDyn(object learning_rate, ImplicitContainer<T> initial_accumulator, ImplicitContainer<T> use_gradient_accumulation, object clip_weight_min, object clip_weight_max)
Optimization parameters for Adagrad.
Parameters
-
object
learning_rate - used for updating embedding table.
-
ImplicitContainer<T>
initial_accumulator - initial accumulator for Adagrad.
-
ImplicitContainer<T>
use_gradient_accumulation - setting this to `False` makes embedding gradients calculation less accurate but faster. Please see `optimization_parameters.proto` for details. for details.
-
object
clip_weight_min - the minimum value to clip by; None means -infinity.
-
object
clip_weight_max - the maximum value to clip by; None means +infinity.