LostTech.TensorFlow : API Documentation

Type ITowerOptimizer

Namespace tensorflow_estimator.contrib.estimator

Interfaces IOptimizer

Public instance methods

object apply_gradients(object grads_and_vars, object global_step, IDictionary<string, object> kwargs)

object compute_gradients(object loss, Object[] args)

Compute gradients of `loss` for the variables in `var_list`.

This is the first part of `minimize()`. It returns a list of (gradient, variable) pairs where "gradient" is the gradient for "variable". Note that "gradient" can be a `Tensor`, an `IndexedSlices`, or `None` if there is no gradient for the given variable.
Parameters
object loss
A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable.
Object[] args
Returns
object
A list of (gradient, variable) pairs. Variable is always present, but gradient can be `None`.

object compute_gradients(object loss, IDictionary<string, object> kwargs, Object[] args)

Compute gradients of `loss` for the variables in `var_list`.

This is the first part of `minimize()`. It returns a list of (gradient, variable) pairs where "gradient" is the gradient for "variable". Note that "gradient" can be a `Tensor`, an `IndexedSlices`, or `None` if there is no gradient for the given variable.
Parameters
object loss
A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable.
IDictionary<string, object> kwargs
Object[] args
Returns
object
A list of (gradient, variable) pairs. Variable is always present, but gradient can be `None`.