Type ITowerOptimizer
Namespace tensorflow_estimator.contrib.estimator
Interfaces IOptimizer
Public instance methods
object apply_gradients(object grads_and_vars, object global_step, IDictionary<string, object> kwargs)
object compute_gradients(object loss, Object[] args)
Compute gradients of `loss` for the variables in `var_list`.  This is the first part of `minimize()`.  It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable".  Note that "gradient" can be a `Tensor`, an
`IndexedSlices`, or `None` if there is no gradient for the
given variable. 
			
				
			
				
		
	Parameters
- 
							objectloss
- A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable.
- 
							Object[]args
Returns
- 
						object
- A list of (gradient, variable) pairs. Variable is always present, but gradient can be `None`.
object compute_gradients(object loss, IDictionary<string, object> kwargs, Object[] args)
Compute gradients of `loss` for the variables in `var_list`.  This is the first part of `minimize()`.  It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable".  Note that "gradient" can be a `Tensor`, an
`IndexedSlices`, or `None` if there is no gradient for the
given variable. 
			
				
			
				
		
	Parameters
- 
							objectloss
- A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable.
- 
							IDictionary<string, object>kwargs
- 
							Object[]args
Returns
- 
						object
- A list of (gradient, variable) pairs. Variable is always present, but gradient can be `None`.