Type RNNClassifier
Namespace tensorflow_estimator.contrib.estimator
Parent Estimator
Interfaces IRNNClassifier
Methods
- eval_dir
- eval_dir_dyn
- evaluate
- evaluate
- evaluate_dyn
- export_savedmodel
- export_savedmodel
- export_savedmodel
- export_savedmodel_dyn
- get_variable_names
- get_variable_names_dyn
- get_variable_value
- get_variable_value_dyn
- latest_checkpoint
- latest_checkpoint_dyn
- NewDyn
- predict
- predict
- predict_dyn
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train
- train_dyn
Properties
Public instance methods
object eval_dir(string name)
object eval_dir_dyn(object name)
IDictionary<object, object> evaluate(PythonFunctionContainer input_fn, int steps, IEnumerable<object> hooks, object checkpoint_path, string name)
IDictionary<object, object> evaluate(PythonFunctionContainer input_fn, string steps, IEnumerable<object> hooks, object checkpoint_path, string name)
object evaluate_dyn(object input_fn, object steps, object hooks, object checkpoint_path, object name)
object export_savedmodel(object export_dir_base, Evaluable serving_input_receiver_fn, IDictionary<string, string> assets_extra, bool as_text, object checkpoint_path, bool strip_default_attrs)
object export_savedmodel(object export_dir_base, Estimator serving_input_receiver_fn, IDictionary<string, string> assets_extra, bool as_text, object checkpoint_path, bool strip_default_attrs)
object export_savedmodel(object export_dir_base, PythonFunctionContainer serving_input_receiver_fn, IDictionary<string, string> assets_extra, bool as_text, object checkpoint_path, bool strip_default_attrs)
object export_savedmodel_dyn(object export_dir_base, object serving_input_receiver_fn, object assets_extra, ImplicitContainer<T> as_text, object checkpoint_path, ImplicitContainer<T> strip_default_attrs)
IList<object> get_variable_names()
Returns list of all variable names in this model.
Returns
-
IList<object>
- List of names.
object get_variable_names_dyn()
Returns list of all variable names in this model.
Returns
-
object
- List of names.
object get_variable_value(string name)
Returns value of the variable given by name.
Parameters
-
string
name - string, name of the tensor.
Returns
-
object
- Numpy array - value of the tensor.
object get_variable_value_dyn(object name)
Returns value of the variable given by name.
Parameters
-
object
name - string, name of the tensor.
Returns
-
object
- Numpy array - value of the tensor.
object latest_checkpoint()
object latest_checkpoint_dyn()
IEnumerator<object> predict(ValueTuple<object, object, object> input_fn, IEnumerable<string> predict_keys, IEnumerable<object> hooks, object checkpoint_path, bool yield_single_examples)
IEnumerator<object> predict(PythonFunctionContainer input_fn, IEnumerable<string> predict_keys, IEnumerable<object> hooks, object checkpoint_path, bool yield_single_examples)
object predict_dyn(object input_fn, object predict_keys, object hooks, object checkpoint_path, ImplicitContainer<T> yield_single_examples)
Returns predictions for given features. (deprecated argument values) (deprecated argument values) Warning: SOME ARGUMENT VALUES ARE DEPRECATED: `(as_iterable=False)`. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below. Warning: SOME ARGUMENT VALUES ARE DEPRECATED: `(outputs=None)`. They will be removed after 2017-03-01.
Instructions for updating:
Please switch to predict_classes, or set `outputs` argument. By default, returns predicted classes. But this default will be dropped
soon. Users should either pass `outputs`, or call `predict_classes` method.
Parameters
-
object
input_fn - Input function. If set, x must be None.
-
object
predict_keys -
object
hooks -
object
checkpoint_path -
ImplicitContainer<T>
yield_single_examples
Returns
-
object
- Numpy array of predicted classes with shape [batch_size] (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). If `outputs` is set, returns a dict of predictions.