Type CheckpointInputPipelineHook
Namespace tensorflow.contrib.data
Parent CheckpointInputPipelineHook
Interfaces ICheckpointInputPipelineHook
Checkpoints input pipeline state every N steps or seconds. This hook saves the state of the iterators in the `Graph` so that when
training is resumed the input pipeline continues from where it left off.
This could potentially avoid overfitting in certain pipelines where the
number of training steps per eval are small compared to the dataset
size or if the training pipeline is pre-empted. Differences from `CheckpointSaverHook`:
1. Saves only the input pipelines in the "iterators" collection and not the
global variables or other saveable objects.
2. Does not write the `GraphDef` and `MetaGraphDef` to the summary. Example of checkpointing the training pipeline:
This hook should be used if the input pipeline state needs to be saved
separate from the model checkpoint. Doing so may be useful for a few reasons:
1. The input pipeline checkpoint may be large, if there are large shuffle
or prefetch buffers for instance, and may bloat the checkpoint size.
2. If the input pipeline is shared between training and validation, restoring
the checkpoint during validation may override the validation input
pipeline. For saving the input pipeline checkpoint alongside the model weights use
tf.data.experimental.make_saveable_from_iterator
directly to create a
`SaveableObject` and add to the `SAVEABLE_OBJECTS` collection. Note, however,
that you will need to be careful not to restore the training iterator during
eval. You can do that by not adding the iterator to the SAVEABLE_OBJECTS
collector when building the eval graph.
Show Example
est = tf.estimator.Estimator(model_fn) while True: est.train( train_input_fn, hooks=[tf.data.experimental.CheckpointInputPipelineHook(est)], steps=train_steps_per_eval) # Note: We do not pass the hook here. metrics = est.evaluate(eval_input_fn) if should_stop_the_training(metrics): break