Type data
Namespace tensorflow.contrib.data
Methods
- assert_element_shape
- assert_element_shape_dyn
- batch_and_drop_remainder
- batch_and_drop_remainder_dyn
- bucket_by_sequence_length
- bucket_by_sequence_length_dyn
- choose_from_datasets
- copy_to_device
- copy_to_device_dyn
- dense_to_sparse_batch
- dense_to_sparse_batch_dyn
- enumerate_dataset
- enumerate_dataset_dyn
- get_single_element
- get_single_element_dyn
- group_by_reducer
- group_by_reducer_dyn
- group_by_window
- group_by_window_dyn
- ignore_errors
- ignore_errors_dyn
- make_batched_features_dataset
- make_csv_dataset
- make_csv_dataset_dyn
- make_saveable_from_iterator
- make_saveable_from_iterator_dyn
- map_and_batch
- map_and_batch_dyn
- padded_batch_and_drop_remainder
- padded_batch_and_drop_remainder_dyn
- parallel_interleave
- parallel_interleave_dyn
- parse_example_dataset
- parse_example_dataset_dyn
- prefetch_to_device
- prefetch_to_device_dyn
- read_batch_features
- read_batch_features_dyn
- reduce_dataset
- reduce_dataset
- reduce_dataset_dyn
- rejection_resample
- rejection_resample_dyn
- sample_from_datasets
- scan
- scan_dyn
- shuffle_and_repeat
- shuffle_and_repeat_dyn
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch
- sliding_window_batch_dyn
- sloppy_interleave
- sloppy_interleave_dyn
- unique
- unique_dyn
Properties
- assert_element_shape_fn
- batch_and_drop_remainder_fn
- bucket_by_sequence_length_fn
- choose_from_datasets_fn
- copy_to_device_fn
- Counter_fn
- dense_to_sparse_batch_fn
- enumerate_dataset_fn
- get_single_element_fn
- group_by_reducer_fn
- group_by_window_fn
- ignore_errors_fn
- make_batched_features_dataset_fn
- make_csv_dataset_fn
- make_saveable_from_iterator_fn
- map_and_batch_fn
- padded_batch_and_drop_remainder_fn
- parallel_interleave_fn
- parse_example_dataset_fn
- prefetch_to_device_fn
- read_batch_features_fn
- reduce_dataset_fn
- rejection_resample_fn
- sample_from_datasets_fn
- scan_fn
- shuffle_and_repeat_fn
- sliding_window_batch_fn
- sloppy_interleave_fn
- unbatch_fn
- unique_fn
Public static methods
object assert_element_shape(ValueTuple<TensorShape, object> expected_shapes)
object assert_element_shape_dyn(object expected_shapes)
object batch_and_drop_remainder(object batch_size)
object batch_and_drop_remainder_dyn(object batch_size)
object bucket_by_sequence_length(object element_length_func, object bucket_boundaries, object bucket_batch_sizes, object padded_shapes, object padding_values, bool pad_to_bucket_boundary, bool no_padding)
object bucket_by_sequence_length_dyn(object element_length_func, object bucket_boundaries, object bucket_batch_sizes, object padded_shapes, object padding_values, ImplicitContainer<T> pad_to_bucket_boundary, ImplicitContainer<T> no_padding)
DatasetV1Adapter choose_from_datasets(object datasets, object choice_dataset)
object copy_to_device(object target_device, string source_device)
object copy_to_device_dyn(object target_device, ImplicitContainer<T> source_device)
object dense_to_sparse_batch(object batch_size, object row_shape)
object dense_to_sparse_batch_dyn(object batch_size, object row_shape)
A transformation that batches ragged elements into
tf.SparseTensor
s. Like `Dataset.padded_batch()`, this transformation combines multiple
consecutive elements of the dataset, which might have different
shapes, into a single element. The resulting element has three
components (`indices`, `values`, and `dense_shape`), which
comprise a tf.SparseTensor
that represents the same data. The
`row_shape` represents the dense shape of each row in the
resulting tf.SparseTensor
, to which the effective batch size is
prepended.
Parameters
-
object
batch_size - A
tf.int64
scalartf.Tensor
, representing the number of consecutive elements of this dataset to combine in a single batch. -
object
row_shape - A
tf.TensorShape
ortf.int64
vector tensor-like object representing the equivalent dense shape of a row in the resultingtf.SparseTensor
. Each element of this dataset must have the same rank as `row_shape`, and must have size less than or equal to `row_shape` in each dimension.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
Show Example
# NOTE: The following examples use `{... }` to represent the # contents of a dataset. a = { ['a', 'b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'd'] } a.apply(tf.data.experimental.dense_to_sparse_batch( batch_size=2, row_shape=[6])) == { ([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1]], # indices ['a', 'b', 'c', 'a', 'b'], # values [2, 6]), # dense_shape ([[0, 0], [0, 1], [0, 2], [0, 3]], ['a', 'b', 'c', 'd'], [1, 6]) }
object enumerate_dataset(int start)
A transformation that enumerates the elements of a dataset. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.enumerate() It is similar to python's `enumerate`.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
Show Example
# NOTE: The following examples use `{... }` to represent the # contents of a dataset. a = { 1, 2, 3 } b = { (7, 8), (9, 10) } # The nested structure of the `datasets` argument determines the # structure of elements in the resulting dataset. a.apply(tf.data.experimental.enumerate_dataset(start=5)) => { (5, 1), (6, 2), (7, 3) } b.apply(tf.data.experimental.enumerate_dataset()) => { (0, (7, 8)), (1, (9, 10)) }
object enumerate_dataset_dyn(ImplicitContainer<T> start)
object get_single_element(object dataset)
object get_single_element_dyn(object dataset)
Returns the single element in `dataset` as a nested structure of tensors. This function enables you to use a
tf.data.Dataset
in a stateless
"tensor-in tensor-out" expression, without creating a
`tf.compat.v1.data.Iterator`.
This can be useful when your preprocessing transformations are expressed
as a `Dataset`, and you want to use the transformation at serving time.
Parameters
-
object
dataset - A
tf.data.Dataset
object containing a single element.
Returns
-
object
- A nested structure of
tf.Tensor
objects, corresponding to the single element of `dataset`.
Show Example
input_batch = tf.compat.v1.placeholder(tf.string, shape=[BATCH_SIZE]) def preprocessing_fn(input_str): #... return image, label dataset = (tf.data.Dataset.from_tensor_slices(input_batch) .map(preprocessing_fn, num_parallel_calls=BATCH_SIZE) .batch(BATCH_SIZE)) image_batch, label_batch = tf.data.experimental.get_single_element(dataset)
object group_by_reducer(object key_func, object reducer)
object group_by_reducer_dyn(object key_func, object reducer)
A transformation that groups elements and performs a reduction. This transformation maps element of a dataset to a key using `key_func` and
groups the elements by key. The `reducer` is used to process each group; its
`init_func` is used to initialize state for each group when it is created, the
`reduce_func` is used to update the state every time an element is mapped to
the matching group, and the `finalize_func` is used to map the final state to
an output value.
Parameters
-
object
key_func - A function mapping a nested structure of tensors
(having shapes and types defined by `self.output_shapes` and
`self.output_types`) to a scalar
tf.int64
tensor. -
object
reducer - An instance of `Reducer`, which captures the reduction logic using the `init_func`, `reduce_func`, and `finalize_func` functions.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
object group_by_window(object key_func, object reduce_func, object window_size, object window_size_func)
object group_by_window_dyn(object key_func, object reduce_func, object window_size, object window_size_func)
A transformation that groups windows of elements by key and reduces them. This transformation maps each consecutive element in a dataset to a key
using `key_func` and groups the elements by key. It then applies
`reduce_func` to at most `window_size_func(key)` elements matching the same
key. All except the final window for each key will contain
`window_size_func(key)` elements; the final window may be smaller. You may provide either a constant `window_size` or a window size determined by
the key through `window_size_func`.
Parameters
-
object
key_func - A function mapping a nested structure of tensors
(having shapes and types defined by `self.output_shapes` and
`self.output_types`) to a scalar
tf.int64
tensor. -
object
reduce_func - A function mapping a key and a dataset of up to `window_size` consecutive elements matching that key to another dataset.
-
object
window_size - A
tf.int64
scalartf.Tensor
, representing the number of consecutive elements matching the same key to combine in a single batch, which will be passed to `reduce_func`. Mutually exclusive with `window_size_func`. -
object
window_size_func - A function mapping a key to a
tf.int64
scalartf.Tensor
, representing the number of consecutive elements matching the same key to combine in a single batch, which will be passed to `reduce_func`. Mutually exclusive with `window_size`.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
object ignore_errors()
Creates a `Dataset` from another `Dataset` and silently ignores any errors. Use this transformation to produce a dataset that contains the same elements
as the input, but silently drops any elements that caused an error. For
example:
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
Show Example
dataset = tf.data.Dataset.from_tensor_slices([1., 2., 0., 4.]) # Computing `tf.debugging.check_numerics(1. / 0.)` will raise an InvalidArgumentError. dataset = dataset.map(lambda x: tf.debugging.check_numerics(1. / x, "error")) # Using `ignore_errors()` will drop the element that causes an error. dataset = dataset.apply(tf.data.experimental.ignore_errors()) # ==> {1., 0.5, 0.2}
object ignore_errors_dyn()
Creates a `Dataset` from another `Dataset` and silently ignores any errors. Use this transformation to produce a dataset that contains the same elements
as the input, but silently drops any elements that caused an error. For
example:
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
Show Example
dataset = tf.data.Dataset.from_tensor_slices([1., 2., 0., 4.]) # Computing `tf.debugging.check_numerics(1. / 0.)` will raise an InvalidArgumentError. dataset = dataset.map(lambda x: tf.debugging.check_numerics(1. / x, "error")) # Using `ignore_errors()` will drop the element that causes an error. dataset = dataset.apply(tf.data.experimental.ignore_errors()) # ==> {1., 0.5, 0.2}
DatasetV1Adapter make_batched_features_dataset(object file_pattern, object batch_size, object features, ImplicitContainer<T> reader, object label_key, object reader_args, object num_epochs, bool shuffle, int shuffle_buffer_size, object shuffle_seed, object prefetch_buffer_size, object reader_num_threads, object parser_num_threads, bool sloppy_ordering, bool drop_final_batch)
DatasetV1Adapter make_csv_dataset(object file_pattern, object batch_size, object column_names, object column_defaults, object label_name, object select_columns, string field_delim, bool use_quote_delim, string na_value, bool header, object num_epochs, bool shuffle, int shuffle_buffer_size, object shuffle_seed, object prefetch_buffer_size, object num_parallel_reads, bool sloppy, int num_rows_for_inference, object compression_type)
object make_csv_dataset_dyn(object file_pattern, object batch_size, object column_names, object column_defaults, object label_name, object select_columns, ImplicitContainer<T> field_delim, ImplicitContainer<T> use_quote_delim, ImplicitContainer<T> na_value, ImplicitContainer<T> header, object num_epochs, ImplicitContainer<T> shuffle, ImplicitContainer<T> shuffle_buffer_size, object shuffle_seed, object prefetch_buffer_size, object num_parallel_reads, ImplicitContainer<T> sloppy, ImplicitContainer<T> num_rows_for_inference, object compression_type)
_Saveable make_saveable_from_iterator(object iterator)
object make_saveable_from_iterator_dyn(object iterator)
Returns a SaveableObject for saving/restoring iterator state using Saver.
Parameters
-
object
iterator - Iterator.
Returns
-
object
- A SaveableObject for saving/restoring iterator state using Saver.
object map_and_batch(object map_func, object batch_size, Nullable<int> num_parallel_batches, bool drop_remainder, object num_parallel_calls)
object map_and_batch_dyn(object map_func, object batch_size, object num_parallel_batches, ImplicitContainer<T> drop_remainder, object num_parallel_calls)
object padded_batch_and_drop_remainder(object batch_size, object padded_shapes, object padding_values)
object padded_batch_and_drop_remainder_dyn(object batch_size, object padded_shapes, object padding_values)
object parallel_interleave(object map_func, object cycle_length, int block_length, bool sloppy, object buffer_output_elements, object prefetch_input_elements)
object parallel_interleave_dyn(object map_func, object cycle_length, ImplicitContainer<T> block_length, ImplicitContainer<T> sloppy, object buffer_output_elements, object prefetch_input_elements)
object parse_example_dataset(object features, int num_parallel_calls)
object parse_example_dataset_dyn(object features, ImplicitContainer<T> num_parallel_calls)
object prefetch_to_device(object device, object buffer_size)
object prefetch_to_device_dyn(object device, object buffer_size)
A transformation that prefetches dataset values to the given `device`. NOTE: Although the transformation creates a
tf.data.Dataset
, the
transformation must be the final `Dataset` in the input pipeline.
Parameters
-
object
device - A string. The name of a device to which elements will be prefetched.
-
object
buffer_size - (Optional.) The number of elements to buffer on `device`. Defaults to an automatically chosen value.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
IList<object> read_batch_features(object file_pattern, object batch_size, object features, ImplicitContainer<T> reader, object reader_args, bool randomize_input, object num_epochs, int capacity)
object read_batch_features_dyn(object file_pattern, object batch_size, object features, ImplicitContainer<T> reader, object reader_args, ImplicitContainer<T> randomize_input, object num_epochs, ImplicitContainer<T> capacity)
object reduce_dataset(DatasetV1Adapter dataset, Reducer reducer)
object reduce_dataset_dyn(object dataset, object reducer)
object rejection_resample(object class_func, object target_dist, object initial_dist, object seed)
object rejection_resample_dyn(object class_func, object target_dist, object initial_dist, object seed)
A transformation that resamples a dataset to achieve a target distribution. **NOTE** Resampling is performed via rejection sampling; some fraction
of the input values will be dropped.
Parameters
-
object
class_func - A function mapping an element of the input dataset to a scalar
tf.int32
tensor. Values should be in `[0, num_classes)`. -
object
target_dist - A floating point type tensor, shaped `[num_classes]`.
-
object
initial_dist - (Optional.) A floating point type tensor, shaped `[num_classes]`. If not provided, the true class distribution is estimated live in a streaming fashion.
-
object
seed - (Optional.) Python integer seed for the resampler.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
DatasetV1Adapter sample_from_datasets(object datasets, object weights, object seed)
object scan(object initial_state, object scan_func)
object scan_dyn(object initial_state, object scan_func)
A transformation that scans a function across an input dataset. This transformation is a stateful relative of
tf.data.Dataset.map
.
In addition to mapping `scan_func` across the elements of the input dataset,
`scan()` accumulates one or more state tensors, whose initial values are
`initial_state`.
Parameters
-
object
initial_state - A nested structure of tensors, representing the initial state of the accumulator.
-
object
scan_func - A function that maps `(old_state, input_element)` to `(new_state, output_element). It must take two arguments and return a pair of nested structures of tensors. The `new_state` must match the structure of `initial_state`.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
object shuffle_and_repeat(object buffer_size, object count, object seed)
object shuffle_and_repeat_dyn(object buffer_size, object count, object seed)
Shuffles and repeats a Dataset returning a new permutation for each epoch. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.shuffle(buffer_size, seed)` followed by `tf.data.Dataset.repeat(count)`. Static tf.data optimizations will take care of using the fused implementation. `dataset.apply(tf.data.experimental.shuffle_and_repeat(buffer_size, count))` is equivalent to `dataset.shuffle(buffer_size, reshuffle_each_iteration=True).repeat(count)` The difference is that the latter dataset is not serializable. So,
if you need to checkpoint an input pipeline with reshuffling you must use
this implementation.
Parameters
-
object
buffer_size - A
tf.int64
scalartf.Tensor
, representing the maximum number elements that will be buffered when prefetching. -
object
count - (Optional.) A
tf.int64
scalartf.Tensor
, representing the number of times the dataset should be repeated. The default behavior (if `count` is `None` or `-1`) is for the dataset be repeated indefinitely. -
object
seed - (Optional.) A
tf.int64
scalartf.Tensor
, representing the random seed that will be used to create the distribution. See `tf.compat.v1.set_random_seed` for behavior.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
object sliding_window_batch(int window_size, int stride, int window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(int window_size, int stride, int window_shift, int window_stride)
object sliding_window_batch(IGraphNodeBase window_size, IGraphNodeBase stride, IGraphNodeBase window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(IGraphNodeBase window_size, IGraphNodeBase stride, IGraphNodeBase window_shift, int window_stride)
object sliding_window_batch(int window_size, int stride, IGraphNodeBase window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(IGraphNodeBase window_size, IGraphNodeBase stride, int window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(IGraphNodeBase window_size, IGraphNodeBase stride, int window_shift, int window_stride)
object sliding_window_batch(IGraphNodeBase window_size, int stride, IGraphNodeBase window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(int window_size, int stride, IGraphNodeBase window_shift, int window_stride)
object sliding_window_batch(IGraphNodeBase window_size, int stride, int window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(IGraphNodeBase window_size, int stride, IGraphNodeBase window_shift, int window_stride)
object sliding_window_batch(int window_size, IGraphNodeBase stride, IGraphNodeBase window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(int window_size, IGraphNodeBase stride, IGraphNodeBase window_shift, int window_stride)
object sliding_window_batch(int window_size, IGraphNodeBase stride, int window_shift, IGraphNodeBase window_stride)
object sliding_window_batch(int window_size, IGraphNodeBase stride, int window_shift, int window_stride)
object sliding_window_batch(IGraphNodeBase window_size, int stride, int window_shift, int window_stride)
object sliding_window_batch_dyn(object window_size, object stride, object window_shift, ImplicitContainer<T> window_stride)
object sloppy_interleave(object map_func, object cycle_length, int block_length)
object sloppy_interleave_dyn(object map_func, object cycle_length, ImplicitContainer<T> block_length)
object unique()
Creates a `Dataset` from another `Dataset`, discarding duplicates. Use this transformation to produce a dataset that contains one instance of
each unique element in the input.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
Show Example
dataset = tf.data.Dataset.from_tensor_slices([1, 37, 2, 37, 2, 1]) # Using `unique()` will drop the duplicate elements. dataset = dataset.apply(tf.data.experimental.unique()) # ==> { 1, 37, 2 }
object unique_dyn()
Creates a `Dataset` from another `Dataset`, discarding duplicates. Use this transformation to produce a dataset that contains one instance of
each unique element in the input.
Returns
-
object
- A `Dataset` transformation function, which can be passed to
tf.data.Dataset.apply
.
Show Example
dataset = tf.data.Dataset.from_tensor_slices([1, 37, 2, 37, 2, 1]) # Using `unique()` will drop the duplicate elements. dataset = dataset.apply(tf.data.experimental.unique()) # ==> { 1, 37, 2 }