Type LinearEstimator
Namespace tensorflow.contrib.learn
Parent Estimator
Interfaces ILinearEstimator
Linear model with user specified head. THIS CLASS IS DEPRECATED. See
[contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md)
for general migration instructions. Train a generalized linear model to predict label value given observation of
feature values. Example:
To do poisson regression,
Input of `fit` and `evaluate` should have following features,
otherwise there will be a KeyError: * if `weight_column_name` is not `None`:
key=weight_column_name, value=a `Tensor`
* for column in `feature_columns`:
- if isinstance(column, `SparseColumn`):
key=column.name, value=a `SparseTensor`
- if isinstance(column, `WeightedSparseColumn`):
{key=id column name, value=a `SparseTensor`,
key=weight column name, value=a `SparseTensor`}
- if isinstance(column, `RealValuedColumn`):
key=column.name, value=a `Tensor`
Show Example
sparse_column_a = sparse_column_with_hash_bucket(...)
sparse_column_b = sparse_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) estimator = LinearEstimator(
feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b],
head=head_lib.poisson_regression_head()) # Input builders
def input_fn_train: # returns x, y
...
def input_fn_eval: # returns x, y
...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)
Methods
Properties
Public static methods
LinearEstimator NewDyn(object feature_columns, object head, object model_dir, object weight_column_name, object optimizer, object gradient_clip_norm, ImplicitContainer<T> _joint_weights, object config, object feature_engineering_fn)
Construct a `LinearEstimator` object.
Parameters
-
objectfeature_columns - An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`.
-
objecthead - An instance of _Head class.
-
objectmodel_dir - Directory to save model parameters, graph, etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model.
-
objectweight_column_name - A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example.
-
objectoptimizer - An instance of `tf.Optimizer` used to train the model. If `None`, will use an Ftrl optimizer.
-
objectgradient_clip_norm - A `float` > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_normfor more details. -
ImplicitContainer<T>_joint_weights - If True use a single (possibly partitioned) variable to store the weights. It's faster, but requires all feature columns are sparse and have the 'sum' combiner. Incompatible with SDCAOptimizer.
-
objectconfig - `RunConfig` object to configure the runtime settings.
-
objectfeature_engineering_fn - Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model.
Returns
-
LinearEstimator - A `LinearEstimator` estimator.