Type SVM
Namespace tensorflow.contrib.learn
Parent Estimator
Interfaces ISVM
Support Vector Machine (SVM) model for binary classification. THIS CLASS IS DEPRECATED. See
[contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md)
for general migration instructions. Currently, only linear SVMs are supported. For the underlying optimization
problem, the `SDCAOptimizer` is used. For performance and convergence tuning,
the num_loss_partitions parameter passed to `SDCAOptimizer` (see `__init__()`
method), should be set to (#concurrent train ops per worker) x (#workers). If
num_loss_partitions is larger or equal to this value, convergence is
guaranteed but becomes slower as num_loss_partitions increases. If it is set
to a smaller value, the optimizer is more aggressive in reducing the global
loss but convergence is not guaranteed. The recommended value in an
`Estimator` (where there is one process per worker) is the number of workers
running the train steps. It defaults to 1 (single machine). Example:
Input of `fit` and `evaluate` should have following features, otherwise there
will be a `KeyError`:
a feature with `key=example_id_column` whose value is a `Tensor` of dtype
string.
if `weight_column_name` is not `None`, a feature with
`key=weight_column_name` whose value is a `Tensor`.
for each `column` in `feature_columns`:
- if `column` is a `SparseColumn`, a feature with `key=column.name`
whose `value` is a `SparseTensor`.
- if `column` is a `RealValuedColumn, a feature with `key=column.name`
whose `value` is a `Tensor`.
Show Example
real_feature_column = real_valued_column(...) sparse_feature_column = sparse_column_with_hash_bucket(...) estimator = SVM( example_id_column='example_id', feature_columns=[real_feature_column, sparse_feature_column], l2_regularization=10.0) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x)
Methods
- export
- export
- export
- export
- export
- export
- export
- export
- export_dyn
- export_with_defaults
- export_with_defaults_dyn
- NewDyn
- predict_proba
- predict_proba_dyn
Properties
Public instance methods
object export(Byte[] export_dir, PythonFunctionContainer signature_fn, PythonFunctionContainer input_fn, bool default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export(Byte[] export_dir, PythonFunctionContainer signature_fn, PythonFunctionContainer input_fn, int default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export(Byte[] export_dir, PythonFunctionContainer signature_fn, string input_fn, bool default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export(Byte[] export_dir, PythonFunctionContainer signature_fn, string input_fn, int default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export(string export_dir, PythonFunctionContainer signature_fn, PythonFunctionContainer input_fn, bool default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export(string export_dir, PythonFunctionContainer signature_fn, PythonFunctionContainer input_fn, int default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export(string export_dir, PythonFunctionContainer signature_fn, string input_fn, bool default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export(string export_dir, PythonFunctionContainer signature_fn, string input_fn, int default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export_dyn(object export_dir, object signature_fn, object input_fn, ImplicitContainer<T> default_batch_size, object exports_to_keep)
See BaseEstimator.export. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export_with_defaults(object export_dir, PythonFunctionContainer signature_fn, PythonFunctionContainer input_fn, int default_batch_size, object exports_to_keep)
Same as BaseEstimator.export, but uses some defaults. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
object export_with_defaults_dyn(object export_dir, object signature_fn, object input_fn, ImplicitContainer<T> default_batch_size, object exports_to_keep)
Same as BaseEstimator.export, but uses some defaults. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-25.
Instructions for updating:
Please use Estimator.export_savedmodel() instead.
IEnumerator<object> predict_proba(object x, PythonFunctionContainer input_fn, object batch_size, object outputs, bool as_iterable)
Runs inference to determine the class probability predictions. (deprecated argument values) Warning: SOME ARGUMENT VALUES ARE DEPRECATED: `(as_iterable=False)`. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.
object predict_proba_dyn(object x, object input_fn, object batch_size, object outputs, ImplicitContainer<T> as_iterable)
Runs inference to determine the class probability predictions. (deprecated argument values) Warning: SOME ARGUMENT VALUES ARE DEPRECATED: `(as_iterable=False)`. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.
Public static methods
SVM NewDyn(object example_id_column, object feature_columns, object weight_column_name, object model_dir, ImplicitContainer<T> l1_regularization, ImplicitContainer<T> l2_regularization, ImplicitContainer<T> num_loss_partitions, object kernels, object config, object feature_engineering_fn)
Constructs an `SVM` estimator object.
Parameters
-
object
example_id_column - A string defining the feature column name representing example ids. Used to initialize the underlying optimizer.
-
object
feature_columns - An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`.
-
object
weight_column_name - A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example.
-
object
model_dir - Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model.
-
ImplicitContainer<T>
l1_regularization - L1-regularization parameter. Refers to global L1 regularization (across all examples).
-
ImplicitContainer<T>
l2_regularization - L2-regularization parameter. Refers to global L2 regularization (across all examples).
-
ImplicitContainer<T>
num_loss_partitions - number of partitions of the (global) loss function optimized by the underlying optimizer (SDCAOptimizer).
-
object
kernels - A list of kernels for the SVM. Currently, no kernels are supported. Reserved for future use for non-linear SVMs.
-
object
config - RunConfig object to configure the runtime settings.
-
object
feature_engineering_fn - Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model.