LostTech.TensorFlow : API Documentation

Type AdditiveAttention

Namespace tensorflow.keras.layers

Parent BaseDenseAttention

Interfaces IAdditiveAttention

Additive attention layer, a.k.a. Bahdanau-style attention.

Inputs are `query` tensor of shape `[batch_size, Tq, dim]`, `value` tensor of shape `[batch_size, Tv, dim]` and `key` tensor of shape `[batch_size, Tv, dim]`. The calculation follows the steps:

1. Reshape `query` and `value` into shapes `[batch_size, Tq, 1, dim]` and `[batch_size, 1, Tv, dim]` respectively. 2. Calculate scores with shape `[batch_size, Tq, Tv]` as a non-linear sum: `scores = tf.reduce_sum(tf.tanh(query + value), axis=-1)` 3. Use scores to calculate a distribution with shape `[batch_size, Tq, Tv]`: `distribution = tf.nn.softmax(scores)`. 4. Use `distribution` to create a linear combination of `value` with shape `batch_size, Tq, dim]`: `return tf.matmul(distribution, value)`.

Properties

Public properties

PythonFunctionContainer activity_regularizer get; set;

object activity_regularizer_dyn get; set;

bool built get; set;

bool causal get; set;

object dtype get;

object dtype_dyn get;

bool dynamic get;

object dynamic_dyn get;

IList<Node> inbound_nodes get;

object inbound_nodes_dyn get;

IList<object> input get;

object input_dyn get;

object input_mask get;

object input_mask_dyn get;

IList<object> input_shape get;

object input_shape_dyn get;

object input_spec get; set;

object input_spec_dyn get; set;

IList<object> losses get;

object losses_dyn get;

IList<object> metrics get;

object metrics_dyn get;

object name get;

object name_dyn get;

object name_scope get;

object name_scope_dyn get;

IList<object> non_trainable_variables get;

object non_trainable_variables_dyn get;

IList<object> non_trainable_weights get;

object non_trainable_weights_dyn get;

IList<object> outbound_nodes get;

object outbound_nodes_dyn get;

IList<object> output get;

object output_dyn get;

object output_mask get;

object output_mask_dyn get;

object output_shape get;

object output_shape_dyn get;

object PythonObject get;

ndarray scale get; set;

bool stateful get; set;

ValueTuple<object> submodules get;

object submodules_dyn get;

bool supports_masking get; set;

bool trainable get; set;

object trainable_dyn get; set;

object trainable_variables get;

object trainable_variables_dyn get;

IList<object> trainable_weights get;

object trainable_weights_dyn get;

IList<object> updates get;

object updates_dyn get;

bool use_scale get; set;

object variables get;

object variables_dyn get;

IList<object> weights get;

object weights_dyn get;