Type LocallyConnected2D
Namespace tensorflow.keras.layers
Parent Layer
Interfaces ILocallyConnected2D
Locally-connected layer for 2D inputs. The `LocallyConnected2D` layer works similarly
to the `Conv2D` layer, except that weights are unshared,
that is, a different set of filters is applied at each
different patch of the input. Examples:
Show Example
# apply a 3x3 unshared weights convolution with 64 output filters on a 32x32 image # with `data_format="channels_last"`: model = Sequential() model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3))) # now model.output_shape == (None, 30, 30, 64) # notice that this layer will consume (30*30)*(3*3*3*64) + (30*30)*64 parameters # add a 3x3 unshared weights convolution on top, with 32 output filters: model.add(LocallyConnected2D(32, (3, 3))) # now model.output_shape == (None, 28, 28, 32)
Properties
- activation
- activity_regularizer
- activity_regularizer_dyn
- bias
- bias_constraint
- bias_initializer
- bias_regularizer
- built
- data_format
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- filters
- implementation
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- kernel
- kernel_constraint
- kernel_idxs
- kernel_initializer
- kernel_mask
- kernel_regularizer
- kernel_shape
- kernel_size
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_col
- output_dyn
- output_mask
- output_mask_dyn
- output_row
- output_shape
- output_shape_dyn
- padding
- PythonObject
- stateful
- strides
- submodules
- submodules_dyn
- supports_masking
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- use_bias
- variables
- variables_dyn
- weights
- weights_dyn
Public properties
object activation get; set;
object activity_regularizer get; set;
Optional regularizer function for the output of this layer.