LostTech.TensorFlow : API Documentation

Type DenseFeatures

Namespace tensorflow.keras.layers

Parent _BaseFeaturesLayer

Interfaces IDenseFeatures

A layer that produces a dense `Tensor` based on given `feature_columns`.

Generally a single example in training data is described with FeatureColumns. At the first layer of the model, this column oriented data should be converted to a single `Tensor`.

This layer can be called multiple times with different features.

This is the V1 version of this layer that uses variable_scope's to create variables which works well with PartitionedVariables. Variable scopes are deprecated in V2, so the V2 version uses name_scopes instead. But currently that lacks support for partitioned variables. Use this if you need partitioned variables.

Example:
Show Example
price = numeric_column('price')
            keywords_embedded = embedding_column(
                categorical_column_with_hash_bucket("keywords", 10K), dimensions=16)
            columns = [price, keywords_embedded,...]
            feature_layer = DenseFeatures(columns) 

features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = feature_layer(features) for units in [128, 64, 32]: dense_tensor = tf.compat.v1.keras.layers.Dense( units, activation='relu')(dense_tensor) prediction = tf.compat.v1.keras.layers.Dense(1)(dense_tensor)

Properties

Public properties

PythonFunctionContainer activity_regularizer get; set;

object activity_regularizer_dyn get; set;

bool built get; set;

object dtype get;

object dtype_dyn get;

bool dynamic get;

object dynamic_dyn get;

IList<Node> inbound_nodes get;

object inbound_nodes_dyn get;

IList<object> input get;

object input_dyn get;

object input_mask get;

object input_mask_dyn get;

IList<object> input_shape get;

object input_shape_dyn get;

object input_spec get; set;

object input_spec_dyn get; set;

IList<object> losses get;

object losses_dyn get;

IList<object> metrics get;

object metrics_dyn get;

object name get;

object name_dyn get;

object name_scope get;

object name_scope_dyn get;

IList<object> non_trainable_variables get;

object non_trainable_variables_dyn get;

IList<object> non_trainable_weights get;

object non_trainable_weights_dyn get;

IList<object> outbound_nodes get;

object outbound_nodes_dyn get;

IList<object> output get;

object output_dyn get;

object output_mask get;

object output_mask_dyn get;

object output_shape get;

object output_shape_dyn get;

object PythonObject get;

bool stateful get; set;

ValueTuple<object> submodules get;

object submodules_dyn get;

bool supports_masking get; set;

bool trainable get; set;

object trainable_dyn get; set;

object trainable_variables get;

object trainable_variables_dyn get;

IList<object> trainable_weights get;

object trainable_weights_dyn get;

IList<object> updates get;

object updates_dyn get;

object variables get;

object variables_dyn get;

IList<object> weights get;

object weights_dyn get;