LostTech.TensorFlow : API Documentation

Type AbsoluteValue

Namespace tensorflow.contrib.distributions.bijectors

Parent Bijector

Interfaces IAbsoluteValue

Computes `Y = g(X) = Abs(X)`, element-wise.

This non-injective bijector allows for transformations of scalar distributions with the absolute value function, which maps `(-inf, inf)` to `[0, inf)`.

* For `y in (0, inf)`, `AbsoluteValue.inverse(y)` returns the set inverse `{x in (-inf, inf) : |x| = y}` as a tuple, `-y, y`. * `AbsoluteValue.inverse(0)` returns `0, 0`, which is not the set inverse (the set inverse is the singleton `{0}`), but "works" in conjunction with `TransformedDistribution` to produce a left semi-continuous pdf. * For `y < 0`, `AbsoluteValue.inverse(y)` happily returns the wrong thing, `-y, y`. This is done for efficiency. If `validate_args == True`, `y < 0` will raise an exception.
Show Example
tfd = tf.contrib.distributions 

abs = tfd.bijectors.AbsoluteValue()

abs.forward([-1., 0., 1.]) ==> [1., 0., 1.]

abs.inverse(1.) ==> [-1., 1.]

# The |dX/dY| is constant, == 1. So Log|dX/dY| == 0. abs.inverse_log_det_jacobian(1.) ==> [0., 0.]

# Special case handling of 0. abs.inverse(0.) ==> [0., 0.]

abs.inverse_log_det_jacobian(0.) ==> [0., 0.]

Properties

Public properties

object dtype get;

object dtype_dyn get;

object forward_min_event_ndims get;

object forward_min_event_ndims_dyn get;

IList<object> graph_parents get;

object graph_parents_dyn get;

object inverse_min_event_ndims get;

object inverse_min_event_ndims_dyn get;

bool is_constant_jacobian get;

object is_constant_jacobian_dyn get;

object name get;

object name_dyn get;

object PythonObject get;

bool validate_args get;

object validate_args_dyn get;