Type Inline
Namespace tensorflow.contrib.distributions.bijectors
Parent Bijector
Interfaces IInline
Bijector constructed from custom callables. Example Use:
The above example is equivalent to the `Bijector` `Exp()`.
Show Example
exp = Inline( forward_fn=tf.exp, inverse_fn=tf.math.log, inverse_log_det_jacobian_fn=( lambda y: -tf.reduce_sum(tf.math.log(y), axis=-1)), name="exp")
Methods
Properties
Public static methods
Inline NewDyn(object forward_fn, object inverse_fn, object inverse_log_det_jacobian_fn, object forward_log_det_jacobian_fn, object forward_event_shape_fn, object forward_event_shape_tensor_fn, object inverse_event_shape_fn, object inverse_event_shape_tensor_fn, ImplicitContainer<T> is_constant_jacobian, ImplicitContainer<T> validate_args, object forward_min_event_ndims, object inverse_min_event_ndims, ImplicitContainer<T> name)
Creates a `Bijector` from callables. (deprecated) Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2018-10-01.
Instructions for updating:
The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use `tfp.distributions` instead of
tf.contrib.distributions
.
Parameters
-
object
forward_fn - Python callable implementing the forward transformation.
-
object
inverse_fn - Python callable implementing the inverse transformation.
-
object
inverse_log_det_jacobian_fn - Python callable implementing the log o det o jacobian of the inverse transformation.
-
object
forward_log_det_jacobian_fn - Python callable implementing the log o det o jacobian of the forward transformation.
-
object
forward_event_shape_fn - Python callable implementing non-identical static event shape changes. Default: shape is assumed unchanged.
-
object
forward_event_shape_tensor_fn - Python callable implementing non-identical event shape changes. Default: shape is assumed unchanged.
-
object
inverse_event_shape_fn - Python callable implementing non-identical static event shape changes. Default: shape is assumed unchanged.
-
object
inverse_event_shape_tensor_fn - Python callable implementing non-identical event shape changes. Default: shape is assumed unchanged.
-
ImplicitContainer<T>
is_constant_jacobian - Python `bool` indicating that the Jacobian is constant for all input arguments.
-
ImplicitContainer<T>
validate_args - Python `bool` indicating whether arguments should be checked for correctness.
-
object
forward_min_event_ndims - Python `int` indicating the minimal dimensionality this bijector acts on.
-
object
inverse_min_event_ndims - Python `int` indicating the minimal dimensionality this bijector acts on.
-
ImplicitContainer<T>
name - Python `str`, name given to ops managed by this object.