Type Kumaraswamy
Namespace tensorflow.contrib.distributions.bijectors
Parent Bijector
Interfaces IKumaraswamy
Compute `Y = g(X) = (1 - (1 - X)**(1 / b))**(1 / a), X in [0, 1]`. This bijector maps inputs from `[0, 1]` to [0, 1]`. The inverse of the
bijector applied to a uniform random variable `X ~ U(0, 1) gives back a
random variable with the [Kumaraswamy distribution](
https://en.wikipedia.org/wiki/Kumaraswamy_distribution): ```none
Y ~ Kumaraswamy(a, b)
pdf(y; a, b, 0 <= y <= 1) = a * b * y ** (a - 1) * (1 - y**a) ** (b - 1)
```
Properties
- concentration0
- concentration0_dyn
- concentration1
- concentration1_dyn
- dtype
- dtype_dyn
- forward_min_event_ndims
- forward_min_event_ndims_dyn
- graph_parents
- graph_parents_dyn
- inverse_min_event_ndims
- inverse_min_event_ndims_dyn
- is_constant_jacobian
- is_constant_jacobian_dyn
- name
- name_dyn
- PythonObject
- validate_args
- validate_args_dyn
Public properties
object concentration0 get;
The `b` in: `Y = g(X) = (1 - (1 - X)**(1 / b))**(1 / a)`.
object concentration0_dyn get;
The `b` in: `Y = g(X) = (1 - (1 - X)**(1 / b))**(1 / a)`.
object concentration1 get;
The `a` in: `Y = g(X) = (1 - (1 - X)**(1 / b))**(1 / a)`.
object concentration1_dyn get;
The `a` in: `Y = g(X) = (1 - (1 - X)**(1 / b))**(1 / a)`.