LostTech.TensorFlow : API Documentation

Type DiscreteScalarDistributionTestHelpers

Namespace tensorflow.contrib.distributions

Parent PythonObjectContainer

Interfaces IDiscreteScalarDistributionTestHelpers

Public instance methods

ValueTuple<Tensor, object> histogram(object x, object value_range, object nbins, string name)

object histogram_dyn(object x, object value_range, object nbins, object name)

Outputs a `Summary` protocol buffer with a histogram.

Adding a histogram summary makes it possible to visualize your data's distribution in TensorBoard. You can see a detailed explanation of the TensorBoard histogram dashboard [here](https://www.tensorflow.org/get_started/tensorboard_histograms).

The generated [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto) has one summary value containing a histogram for `values`.

This op reports an `InvalidArgument` error if any value is not finite.
Parameters
object x
object value_range
object nbins
object name
A name for the generated node. Will also serve as a series name in TensorBoard.
Returns
object
A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer.

void run_test_sample_consistent_log_prob(PythonFunctionContainer sess_run_fn, Distribution dist, ImplicitContainer<T> num_samples, ImplicitContainer<T> num_threshold, int seed, Nullable<int> batch_size, double rtol, double atol)

object run_test_sample_consistent_log_prob_dyn(object sess_run_fn, object dist, ImplicitContainer<T> num_samples, ImplicitContainer<T> num_threshold, ImplicitContainer<T> seed, object batch_size, ImplicitContainer<T> rtol, ImplicitContainer<T> atol)

void run_test_sample_consistent_mean_variance(PythonFunctionContainer sess_run_fn, PoissonLogNormalQuadratureCompound dist, ImplicitContainer<T> num_samples, int seed, double rtol, double atol)

object run_test_sample_consistent_mean_variance_dyn(object sess_run_fn, object dist, ImplicitContainer<T> num_samples, ImplicitContainer<T> seed, ImplicitContainer<T> rtol, ImplicitContainer<T> atol)

Public properties

object PythonObject get;