Type WishartFull
Namespace tensorflow.contrib.distributions
Parent _WishartLinearOperator
Interfaces IWishartFull
The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar degrees of freedom `df` and a
symmetric, positive definite scale matrix. Evaluation of the pdf, determinant, and sampling are all `O(k^3)` operations
where `(k, k)` is the event space shape. #### Mathematical Details The probability density function (pdf) is, ```none
pdf(X; df, scale) = det(X)**(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / Z
Z = 2**(0.5 df k) |det(scale)|**(0.5 df) Gamma_k(0.5 df)
``` where:
* `df >= k` denotes the degrees of freedom,
* `scale` is a symmetric, positive definite, `k x k` matrix,
* `Z` is the normalizing constant, and,
* `Gamma_k` is the [multivariate Gamma function](
https://en.wikipedia.org/wiki/Multivariate_gamma_function). #### Examples
Show Example
import tensorflow_probability as tfp
tfd = tfp.distributions # Initialize a single 3x3 Wishart with Full factored scale matrix and 5
# degrees-of-freedom.(*)
df = 5
scale =... # Shape is [3, 3]; positive definite.
dist = tfd.WishartFull(df=df, scale=scale) # Evaluate this on an observation in R^3, returning a scalar.
x =... # A 3x3 positive definite matrix.
dist.prob(x) # Shape is [], a scalar. # Evaluate this on a two observations, each in R^{3x3}, returning a length two
# Tensor.
x = [x0, x1] # Shape is [2, 3, 3].
dist.prob(x) # Shape is [2]. # Initialize two 3x3 Wisharts with Full factored scale matrices.
df = [5, 4]
scale =... # Shape is [2, 3, 3].
dist = tfd.WishartFull(df=df, scale=scale) # Evaluate this on four observations.
x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]; xi is positive definite.
dist.prob(x) # Shape is [2, 2]. # (*) - To efficiently create a trainable covariance matrix, see the example
# in tfd.matrix_diag_transform.
Properties
- allow_nan_stats
- allow_nan_stats_dyn
- batch_shape
- batch_shape_dyn
- cholesky_input_output_matrices
- cholesky_input_output_matrices_dyn
- df
- df_dyn
- dimension
- dimension_dyn
- dtype
- dtype_dyn
- event_shape
- event_shape_dyn
- name
- name_dyn
- parameters
- parameters_dyn
- PythonObject
- reparameterization_type
- reparameterization_type_dyn
- scale_operator
- scale_operator_dyn
- validate_args
- validate_args_dyn