Type MultivariateNormalDiag
Namespace tensorflow.contrib.distributions
Parent MultivariateNormalLinearOperator
Interfaces IMultivariateNormalDiag
The multivariate normal distribution on `R^k`. The Multivariate Normal distribution is defined over `R^k` and parameterized
by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k`
`scale` matrix; `covariance = scale @ scale.T` where `@` denotes
matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none
pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z,
y = inv(scale) @ (x - loc),
Z = (2 pi)**(0.5 k) |det(scale)|,
``` where: * `loc` is a vector in `R^k`,
* `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`,
* `Z` denotes the normalization constant, and,
* `||y||**2` denotes the squared Euclidean norm of `y`. A (non-batch) `scale` matrix is: ```none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
``` where: * `scale_diag.shape = [k]`, and,
* `scale_identity_multiplier.shape = []`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then
`scale` is the Identity matrix. The MultivariateNormal distribution is a member of the [location-scale
family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
constructed as, ```none
X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
``` #### Examples
Show Example
import tensorflow_probability as tfp
tfd = tfp.distributions # Initialize a single 2-variate Gaussian.
mvn = tfd.MultivariateNormalDiag(
loc=[1., -1],
scale_diag=[1, 2.]) mvn.mean().eval()
# ==> [1., -1] mvn.stddev().eval()
# ==> [1., 2] # Evaluate this on an observation in `R^2`, returning a scalar.
mvn.prob([-1., 0]).eval() # shape: [] # Initialize a 3-batch, 2-variate scaled-identity Gaussian.
mvn = tfd.MultivariateNormalDiag(
loc=[1., -1],
scale_identity_multiplier=[1, 2., 3]) mvn.mean().eval() # shape: [3, 2]
# ==> [[1., -1]
# [1, -1],
# [1, -1]] mvn.stddev().eval() # shape: [3, 2]
# ==> [[1., 1],
# [2, 2],
# [3, 3]] # Evaluate this on an observation in `R^2`, returning a length-3 vector.
mvn.prob([-1., 0]).eval() # shape: [3] # Initialize a 2-batch of 3-variate Gaussians.
mvn = tfd.MultivariateNormalDiag(
loc=[[1., 2, 3],
[11, 22, 33]] # shape: [2, 3]
scale_diag=[[1., 2, 3],
[0.5, 1, 1.5]]) # shape: [2, 3] # Evaluate this on a two observations, each in `R^3`, returning a length-2
# vector.
x = [[-1., 0, 1],
[-11, 0, 11.]] # shape: [2, 3].
mvn.prob(x).eval() # shape: [2]
Properties
- allow_nan_stats
- allow_nan_stats_dyn
- batch_shape
- batch_shape_dyn
- bijector
- bijector_dyn
- distribution
- distribution_dyn
- dtype
- dtype_dyn
- event_shape
- event_shape_dyn
- loc
- loc_dyn
- name
- name_dyn
- parameters
- parameters_dyn
- PythonObject
- reparameterization_type
- reparameterization_type_dyn
- scale
- scale_dyn
- validate_args
- validate_args_dyn