Type MultivariateNormalDiag
Namespace tensorflow.contrib.distributions
Parent MultivariateNormalLinearOperator
Interfaces IMultivariateNormalDiag
The multivariate normal distribution on `R^k`.  The Multivariate Normal distribution is defined over `R^k` and parameterized
by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k`
`scale` matrix; `covariance = scale @ scale.T` where `@` denotes
matrix-multiplication.  #### Mathematical Details  The probability density function (pdf) is,  ```none
pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z,
y = inv(scale) @ (x - loc),
Z = (2 pi)**(0.5 k) |det(scale)|,
```  where:  * `loc` is a vector in `R^k`,
* `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`,
* `Z` denotes the normalization constant, and,
* `||y||**2` denotes the squared Euclidean norm of `y`.  A (non-batch) `scale` matrix is:  ```none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
```  where:  * `scale_diag.shape = [k]`, and,
* `scale_identity_multiplier.shape = []`.  Additional leading dimensions (if any) will index batches.  If both `scale_diag` and `scale_identity_multiplier` are `None`, then
`scale` is the Identity matrix.  The MultivariateNormal distribution is a member of the [location-scale
family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
constructed as,  ```none
X ~ MultivariateNormal(loc=0, scale=1)   # Identity scale, zero shift.
Y = scale @ X + loc
```  #### Examples 
		
		
		
			
  Show Example
  
			import tensorflow_probability as tfp
            tfd = tfp.distributions  # Initialize a single 2-variate Gaussian.
mvn = tfd.MultivariateNormalDiag(
    loc=[1., -1],
    scale_diag=[1, 2.])  mvn.mean().eval()
# ==> [1., -1]  mvn.stddev().eval()
# ==> [1., 2]  # Evaluate this on an observation in `R^2`, returning a scalar.
mvn.prob([-1., 0]).eval()  # shape: []  # Initialize a 3-batch, 2-variate scaled-identity Gaussian.
mvn = tfd.MultivariateNormalDiag(
    loc=[1., -1],
    scale_identity_multiplier=[1, 2., 3])  mvn.mean().eval()  # shape: [3, 2]
# ==> [[1., -1]
#      [1, -1],
#      [1, -1]]  mvn.stddev().eval()  # shape: [3, 2]
# ==> [[1., 1],
#      [2, 2],
#      [3, 3]]  # Evaluate this on an observation in `R^2`, returning a length-3 vector.
mvn.prob([-1., 0]).eval()  # shape: [3]  # Initialize a 2-batch of 3-variate Gaussians.
mvn = tfd.MultivariateNormalDiag(
    loc=[[1., 2, 3],
         [11, 22, 33]]           # shape: [2, 3]
    scale_diag=[[1., 2, 3],
                [0.5, 1, 1.5]])  # shape: [2, 3]  # Evaluate this on a two observations, each in `R^3`, returning a length-2
# vector.
x = [[-1., 0, 1],
     [-11, 0, 11.]]   # shape: [2, 3].
mvn.prob(x).eval()    # shape: [2] 
Properties
- allow_nan_stats
- allow_nan_stats_dyn
- batch_shape
- batch_shape_dyn
- bijector
- bijector_dyn
- distribution
- distribution_dyn
- dtype
- dtype_dyn
- event_shape
- event_shape_dyn
- loc
- loc_dyn
- name
- name_dyn
- parameters
- parameters_dyn
- PythonObject
- reparameterization_type
- reparameterization_type_dyn
- scale
- scale_dyn
- validate_args
- validate_args_dyn