Type MultivariateNormalDiagPlusLowRank
Namespace tensorflow.contrib.distributions
Parent MultivariateNormalLinearOperator
Interfaces IMultivariateNormalDiagPlusLowRank
The multivariate normal distribution on `R^k`. The Multivariate Normal distribution is defined over `R^k` and parameterized
by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k`
`scale` matrix; `covariance = scale @ scale.T` where `@` denotes
matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none
pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z,
y = inv(scale) @ (x - loc),
Z = (2 pi)**(0.5 k) |det(scale)|,
``` where: * `loc` is a vector in `R^k`,
* `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`,
* `Z` denotes the normalization constant, and,
* `||y||**2` denotes the squared Euclidean norm of `y`. A (non-batch) `scale` matrix is: ```none
scale = diag(scale_diag + scale_identity_multiplier ones(k)) +
scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T
``` where: * `scale_diag.shape = [k]`,
* `scale_identity_multiplier.shape = []`,
* `scale_perturb_factor.shape = [k, r]`, typically `k >> r`, and,
* `scale_perturb_diag.shape = [r]`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then
`scale` is the Identity matrix. The MultivariateNormal distribution is a member of the [location-scale
family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
constructed as, ```none
X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
``` #### Examples
Show Example
import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3-variate Gaussian with covariance `cov = S @ S.T`, # `S = diag(d) + U @ diag(m) @ U.T`. The perturbation, `U @ diag(m) @ U.T`, is # a rank-2 update. mu = [-0.5., 0, 0.5] # shape: [3] d = [1.5, 0.5, 2] # shape: [3] U = [[1., 2], [-1, 1], [2, -0.5]] # shape: [3, 2] m = [4., 5] # shape: [2] mvn = tfd.MultivariateNormalDiagPlusLowRank( loc=mu scale_diag=d scale_perturb_factor=U, scale_perturb_diag=m) # Evaluate this on an observation in `R^3`, returning a scalar. mvn.prob([-1, 0, 1]).eval() # shape: [] # Initialize a 2-batch of 3-variate Gaussians; `S = diag(d) + U @ U.T`. mu = [[1., 2, 3], [11, 22, 33]] # shape: [b, k] = [2, 3] U = [[[1., 2], [3, 4], [5, 6]], [[0.5, 0.75], [1,0, 0.25], [1.5, 1.25]]] # shape: [b, k, r] = [2, 3, 2] m = [[0.1, 0.2], [0.4, 0.5]] # shape: [b, r] = [2, 2] mvn = tfd.MultivariateNormalDiagPlusLowRank( loc=mu, scale_perturb_factor=U, scale_perturb_diag=m) mvn.covariance().eval() # shape: [2, 3, 3] # ==> [[[ 15.63 31.57 48.51] # [ 31.57 69.31 105.05] # [ 48.51 105.05 162.59]] # # [[ 2.59 1.41 3.35] # [ 1.41 2.71 3.34] # [ 3.35 3.34 8.35]]] # Compute the pdf of two `R^3` observations (one from each batch); # return a length-2 vector. x = [[-0.9, 0, 0.1], [-10, 0, 9]] # shape: [2, 3] mvn.prob(x).eval() # shape: [2]
Properties
- allow_nan_stats
- allow_nan_stats_dyn
- batch_shape
- batch_shape_dyn
- bijector
- bijector_dyn
- distribution
- distribution_dyn
- dtype
- dtype_dyn
- event_shape
- event_shape_dyn
- loc
- loc_dyn
- name
- name_dyn
- parameters
- parameters_dyn
- PythonObject
- reparameterization_type
- reparameterization_type_dyn
- scale
- scale_dyn
- validate_args
- validate_args_dyn