LostTech.TensorFlow : API Documentation

Type MultivariateNormalDiagPlusLowRank

Namespace tensorflow.contrib.distributions

Parent MultivariateNormalLinearOperator

Interfaces IMultivariateNormalDiagPlusLowRank

The multivariate normal distribution on `R^k`.

The Multivariate Normal distribution is defined over `R^k` and parameterized by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k` `scale` matrix; `covariance = scale @ scale.T` where `@` denotes matrix-multiplication.

#### Mathematical Details

The probability density function (pdf) is,

```none pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z, y = inv(scale) @ (x - loc), Z = (2 pi)**(0.5 k) |det(scale)|, ```

where:

* `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||y||**2` denotes the squared Euclidean norm of `y`.

A (non-batch) `scale` matrix is:

```none scale = diag(scale_diag + scale_identity_multiplier ones(k)) + scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T ```

where:

* `scale_diag.shape = [k]`, * `scale_identity_multiplier.shape = []`, * `scale_perturb_factor.shape = [k, r]`, typically `k >> r`, and, * `scale_perturb_diag.shape = [r]`.

Additional leading dimensions (if any) will index batches.

If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix.

The MultivariateNormal distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as,

```none X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift. Y = scale @ X + loc ```

#### Examples
Show Example
import tensorflow_probability as tfp
            tfd = tfp.distributions 

# Initialize a single 3-variate Gaussian with covariance `cov = S @ S.T`, # `S = diag(d) + U @ diag(m) @ U.T`. The perturbation, `U @ diag(m) @ U.T`, is # a rank-2 update. mu = [-0.5., 0, 0.5] # shape: [3] d = [1.5, 0.5, 2] # shape: [3] U = [[1., 2], [-1, 1], [2, -0.5]] # shape: [3, 2] m = [4., 5] # shape: [2] mvn = tfd.MultivariateNormalDiagPlusLowRank( loc=mu scale_diag=d scale_perturb_factor=U, scale_perturb_diag=m)

# Evaluate this on an observation in `R^3`, returning a scalar. mvn.prob([-1, 0, 1]).eval() # shape: []

# Initialize a 2-batch of 3-variate Gaussians; `S = diag(d) + U @ U.T`. mu = [[1., 2, 3], [11, 22, 33]] # shape: [b, k] = [2, 3] U = [[[1., 2], [3, 4], [5, 6]], [[0.5, 0.75], [1,0, 0.25], [1.5, 1.25]]] # shape: [b, k, r] = [2, 3, 2] m = [[0.1, 0.2], [0.4, 0.5]] # shape: [b, r] = [2, 2]

mvn = tfd.MultivariateNormalDiagPlusLowRank( loc=mu, scale_perturb_factor=U, scale_perturb_diag=m)

mvn.covariance().eval() # shape: [2, 3, 3] # ==> [[[ 15.63 31.57 48.51] # [ 31.57 69.31 105.05] # [ 48.51 105.05 162.59]] # # [[ 2.59 1.41 3.35] # [ 1.41 2.71 3.34] # [ 3.35 3.34 8.35]]]

# Compute the pdf of two `R^3` observations (one from each batch); # return a length-2 vector. x = [[-0.9, 0, 0.1], [-10, 0, 9]] # shape: [2, 3] mvn.prob(x).eval() # shape: [2]

Properties

Public properties

object allow_nan_stats get;

object allow_nan_stats_dyn get;

TensorShape batch_shape get;

object batch_shape_dyn get;

object bijector get;

object bijector_dyn get;

object distribution get;

object distribution_dyn get;

object dtype get;

object dtype_dyn get;

TensorShape event_shape get;

object event_shape_dyn get;

object loc get;

object loc_dyn get;

string name get;

object name_dyn get;

IDictionary<object, object> parameters get;

object parameters_dyn get;

object PythonObject get;

object reparameterization_type get;

object reparameterization_type_dyn get;

object scale get;

object scale_dyn get;

object validate_args get;

object validate_args_dyn get;