Type InverseGamma
Namespace tensorflow.contrib.distributions
Parent Distribution
Interfaces IInverseGamma
InverseGamma distribution. The `InverseGamma` distribution is defined over positive real numbers using
parameters `concentration` (aka "alpha") and `rate` (aka "beta"). #### Mathematical Details The probability density function (pdf) is, ```none
pdf(x; alpha, beta, x > 0) = x**(-alpha - 1) exp(-beta / x) / Z
Z = Gamma(alpha) beta**-alpha
``` where: * `concentration = alpha`,
* `rate = beta`,
* `Z` is the normalizing constant, and,
* `Gamma` is the [gamma function](
https://en.wikipedia.org/wiki/Gamma_function). The cumulative density function (cdf) is, ```none
cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta / x) / Gamma(alpha)
``` where `GammaInc` is the [upper incomplete Gamma function](
https://en.wikipedia.org/wiki/Incomplete_gamma_function). The parameters can be intuited via their relationship to mean and stddev, ```none
concentration = alpha = (mean / stddev)**2
rate = beta = mean / stddev**2
``` Distribution parameters are automatically broadcast in all functions; see
examples for details. WARNING: This distribution may draw 0-valued samples for small concentration
values. See note in
tf.random.gamma
docstring. #### Examples
Show Example
import tensorflow_probability as tfp tfd = tfp.distributions dist = tfd.InverseGamma(concentration=3.0, rate=2.0) dist2 = tfd.InverseGamma(concentration=[3.0, 4.0], rate=[2.0, 3.0])
Properties
Public properties
object allow_nan_stats get;
object allow_nan_stats_dyn get;
TensorShape batch_shape get;
object batch_shape_dyn get;
object concentration get;
Concentration parameter.
object concentration_dyn get;
Concentration parameter.
object dtype get;
object dtype_dyn get;
TensorShape event_shape get;
object event_shape_dyn get;
string name get;
object name_dyn get;
IDictionary<object, object> parameters get;
object parameters_dyn get;
object PythonObject get;
object rate get;
Rate parameter.
object rate_dyn get;
Rate parameter.