Type VectorDeterministic
Namespace tensorflow.contrib.distributions
Parent _BaseDeterministic
Interfaces IVectorDeterministic
Vector `Deterministic` distribution on `R^k`. The `VectorDeterministic` distribution is parameterized by a [batch] point
`loc in R^k`. The distribution is supported at this point only,
and corresponds to a random variable that is constant, equal to `loc`. See [Degenerate rv](https://en.wikipedia.org/wiki/Degenerate_distribution). #### Mathematical Details The probability mass function (pmf) is ```none
pmf(x; loc)
= 1, if All[Abs(x - loc) <= atol + rtol * Abs(loc)],
= 0, otherwise.
``` #### Examples
Show Example
import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single VectorDeterministic supported at [0., 2.] in R^2. constant = tfd.Deterministic([0., 2.]) constant.prob([0., 2.]) ==> 1. constant.prob([0., 3.]) ==> 0. # Initialize a [3] batch of constants on R^2. loc = [[0., 1.], [2., 3.], [4., 5.]] constant = tfd.VectorDeterministic(loc) constant.prob([[0., 1.], [1.9, 3.], [3.99, 5.]]) ==> [1., 0., 0.]