LostTech.TensorFlow : API Documentation

Type OneHotCategorical

Namespace tensorflow.contrib.distributions

Parent Distribution

Interfaces IOneHotCategorical

OneHotCategorical distribution.

The categorical distribution is parameterized by the log-probabilities of a set of classes. The difference between OneHotCategorical and Categorical distributions is that OneHotCategorical is a discrete distribution over one-hot bit vectors whereas Categorical is a discrete distribution over positive integers. OneHotCategorical is equivalent to Categorical except Categorical has event_dim=() while OneHotCategorical has event_dim=K, where K is the number of classes.

This class provides methods to create indexed batches of OneHotCategorical distributions. If the provided `logits` or `probs` is rank 2 or higher, for every fixed set of leading dimensions, the last dimension represents one single OneHotCategorical distribution. When calling distribution functions (e.g. `dist.prob(x)`), `logits` and `x` are broadcast to the same shape (if possible). In all cases, the last dimension of `logits,x` represents single OneHotCategorical distributions.

#### Examples

Creates a 3-class distribution, with the 2nd class, the most likely to be drawn from. Creates a 3-class distribution, with the 2nd class the most likely to be drawn from, using logits. Creates a 3-class distribution, with the 3rd class is most likely to be drawn.
Show Example
p = [0.1, 0.5, 0.4]
            dist = OneHotCategorical(probs=p) 

Properties

Public properties

object allow_nan_stats get;

object allow_nan_stats_dyn get;

TensorShape batch_shape get;

object batch_shape_dyn get;

object dtype get;

object dtype_dyn get;

TensorShape event_shape get;

object event_shape_dyn get;

Tensor event_size get;

Scalar `int32` tensor: the number of classes.

object event_size_dyn get;

Scalar `int32` tensor: the number of classes.

object logits get;

Vector of coordinatewise logits.

object logits_dyn get;

Vector of coordinatewise logits.

string name get;

object name_dyn get;

IDictionary<object, object> parameters get;

object parameters_dyn get;

Tensor probs get;

Vector of coordinatewise probabilities.

object probs_dyn get;

Vector of coordinatewise probabilities.

object PythonObject get;

object reparameterization_type get;

object reparameterization_type_dyn get;

object validate_args get;

object validate_args_dyn get;