Type BinaryCrossentropy
Namespace tensorflow.keras.metrics
Parent MeanMetricWrapper
Interfaces IBinaryCrossentropy
Computes the crossentropy metric between the labels and predictions. This is the crossentropy metric class to be used when there are only two
label classes (0 and 1). Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.BinaryCrossentropy() m.update_state([1., 0., 1., 0.], [1., 1., 1., 0.]) # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] # Metric = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), # -log(Y_MAX + EPSILON), -log(1)] # = [(0 + 15.33) / 2, (0 + 0) / 2] # Reduced metric = 7.665 / 2 print('Final result: ', m.result().numpy()) # Final result: 3.833
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- count
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- reduction
- stateful
- submodules
- submodules_dyn
- supports_masking
- total
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn