Type Precision
Namespace tensorflow.keras.metrics
Parent Metric
Interfaces IPrecision
Computes the precision of the predictions with respect to the labels. For example, if `y_true` is [0, 1, 1, 1] and `y_pred` is [1, 0, 1, 1]
then the precision value is 2/(2+1) ie. 0.66. If the weights were specified as
[0, 0, 1, 0] then the precision value would be 1. The metric creates two local variables, `true_positives` and `false_positives`
that are used to compute the precision. This value is ultimately returned as
`precision`, an idempotent operation that simply divides `true_positives`
by the sum of `true_positives` and `false_positives`. If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values. If `top_k` is set, we'll calculate precision as how often on average a class
among the top-k classes with the highest predicted values of a batch entry is
correct and can be found in the label for that entry. If `class_id` is specified, we calculate precision by considering only the
entries in the batch for which `class_id` is above the threshold and/or in the
top-k highest predictions, and computing the fraction of them for which
`class_id` is indeed a correct label. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.Precision() m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) print('Final result: ', m.result().numpy()) # Final result: 0.66
Methods
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- class_id
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- false_positives
- inbound_nodes
- inbound_nodes_dyn
- init_thresholds
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- stateful
- submodules
- submodules_dyn
- supports_masking
- thresholds
- top_k
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- true_positives
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public instance methods
object update_state(IEnumerable<IGraphNodeBase> y_true, IEnumerable<object> y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IEnumerable<IGraphNodeBase>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IEnumerable<object>
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IEnumerable<IGraphNodeBase> y_true, int y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IEnumerable<IGraphNodeBase>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
int
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IEnumerable<IGraphNodeBase> y_true, IGraphNodeBase y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IEnumerable<IGraphNodeBase>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IGraphNodeBase
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IEnumerable<IGraphNodeBase> y_true, object y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IEnumerable<IGraphNodeBase>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
object
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> y_true, IEnumerable<object> y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IEnumerable<object>
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> y_true, int y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
int
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> y_true, IGraphNodeBase y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IGraphNodeBase
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> y_true, object y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
object
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(int y_true, IEnumerable<object> y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
int
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IEnumerable<object>
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(int y_true, int y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
int
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
int
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(int y_true, IGraphNodeBase y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
int
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IGraphNodeBase
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(int y_true, object y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
int
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
object
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase y_true, IEnumerable<object> y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IGraphNodeBase
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IEnumerable<object>
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase y_true, int y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IGraphNodeBase
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
int
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase y_true, IGraphNodeBase y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IGraphNodeBase
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
IGraphNodeBase
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase y_true, object y_pred, IGraphNodeBase sample_weight)
Accumulates true positive and false positive statistics.
Parameters
-
IGraphNodeBase
y_true - The ground truth values, with the same dimensions as `y_pred`. Will be cast to `bool`.
-
object
y_pred - The predicted values. Each element must be in the range `[0, 1]`.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.