Type MeanRelativeError
Namespace tensorflow.keras.metrics
Parent Mean
Interfaces IMeanRelativeError
Computes the mean relative error by normalizing with the given values. This metric creates two local variables, `total` and `count` that are used to
compute the mean relative absolute error. This average is weighted by
`sample_weight`, and it is ultimately returned as `mean_relative_error`:
an idempotent operation that simply divides `total` by `count`. If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.MeanRelativeError(normalizer=[1, 3, 2, 3]) m.update_state([1, 3, 2, 3], [2, 4, 6, 8]) # metric = mean(|y_pred - y_true| / normalizer) # = mean([1, 1, 4, 5] / [1, 3, 2, 3]) = mean([1, 1/3, 2, 5/3]) # = 5/4 = 1.25 print('Final result: ', m.result().numpy()) # Final result: 1.25
Methods
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- count
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- normalizer
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- reduction
- stateful
- submodules
- submodules_dyn
- supports_masking
- total
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public instance methods
object update_state(IGraphNodeBase y_true, int y_pred, object sample_weight)
Accumulates root mean squared error statistics.
Parameters
-
IGraphNodeBase
y_true - The ground truth values.
-
int
y_pred - The predicted values.
-
object
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase y_true, IGraphNodeBase y_pred, object sample_weight)
Accumulates root mean squared error statistics.
Parameters
-
IGraphNodeBase
y_true - The ground truth values.
-
IGraphNodeBase
y_pred - The predicted values.
-
object
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase y_true, object y_pred, object sample_weight)
Accumulates root mean squared error statistics.
Parameters
-
IGraphNodeBase
y_true - The ground truth values.
-
object
y_pred - The predicted values.
-
object
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.
object update_state_dyn(object y_true, object y_pred, object sample_weight)
Accumulates root mean squared error statistics.
Parameters
-
object
y_true - The ground truth values.
-
object
y_pred - The predicted values.
-
object
sample_weight - Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.
Returns
-
object
- Update op.