Type CategoricalAccuracy
Namespace tensorflow.keras.metrics
Parent MeanMetricWrapper
Interfaces ICategoricalAccuracy
Calculates how often predictions matches labels. For example, if `y_true` is [[0, 0, 1], [0, 1, 0]] and `y_pred` is
[[0.1, 0.9, 0.8], [0.05, 0.95, 0]] then the categorical accuracy is 1/2 or.5.
If the weights were specified as [0.7, 0.3] then the categorical accuracy
would be.3. You can provide logits of classes as `y_pred`, since argmax of
logits and probabilities are same. This metric creates two local variables, `total` and `count` that are used to
compute the frequency with which `y_pred` matches `y_true`. This frequency is
ultimately returned as `categorical accuracy`: an idempotent operation that
simply divides `total` by `count`. `y_pred` and `y_true` should be passed in as vectors of probabilities, rather
than as labels. If necessary, use
tf.one_hot
to expand `y_true` as a vector. If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.CategoricalAccuracy() m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) print('Final result: ', m.result().numpy()) # Final result: 0.5
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- count
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- reduction
- stateful
- submodules
- submodules_dyn
- supports_masking
- total
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn