Type Sum
Namespace tensorflow.keras.metrics
Parent Reduce
Interfaces ISum
Computes the (weighted) sum of the given values. For example, if values is [1, 3, 5, 7] then the sum is 16.
If the weights were specified as [1, 1, 0, 0] then the sum would be 4. This metric creates one variable, `total`, that is used to compute the sum of
`values`. This is ultimately returned as `sum`. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0
to mask values. Usage:
Usage with tf.keras API:
Show Example
m = tf.keras.metrics.Sum() m.update_state([1, 3, 5, 7]) print('Final result: ', m.result().numpy()) # Final result: 16.0
Methods
- NewDyn
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state
- update_state_dyn
Properties
- activity_regularizer
- activity_regularizer_dyn
- built
- count
- dtype
- dtype_dyn
- dynamic
- dynamic_dyn
- inbound_nodes
- inbound_nodes_dyn
- input
- input_dyn
- input_mask
- input_mask_dyn
- input_shape
- input_shape_dyn
- input_spec
- input_spec_dyn
- losses
- losses_dyn
- metrics
- metrics_dyn
- name
- name_dyn
- name_scope
- name_scope_dyn
- non_trainable_variables
- non_trainable_variables_dyn
- non_trainable_weights
- non_trainable_weights_dyn
- outbound_nodes
- outbound_nodes_dyn
- output
- output_dyn
- output_mask
- output_mask_dyn
- output_shape
- output_shape_dyn
- PythonObject
- reduction
- stateful
- submodules
- submodules_dyn
- supports_masking
- total
- trainable
- trainable_dyn
- trainable_variables
- trainable_variables_dyn
- trainable_weights
- trainable_weights_dyn
- updates
- updates_dyn
- variables
- variables_dyn
- weights
- weights_dyn
Public instance methods
object update_state(IGraphNodeBase values, IGraphNodeBase sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IGraphNodeBase
values - Per-example value.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase values, int sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IGraphNodeBase
values - Per-example value.
-
int
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase values, IEnumerable<object> sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IGraphNodeBase
values - Per-example value.
-
IEnumerable<object>
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(int values, object sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
int
values - Per-example value.
-
object
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(int values, IGraphNodeBase sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
int
values - Per-example value.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(int values, int sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
int
values - Per-example value.
-
int
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(int values, IEnumerable<object> sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
int
values - Per-example value.
-
IEnumerable<object>
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> values, object sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
values - Per-example value.
-
object
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> values, IGraphNodeBase sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
values - Per-example value.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> values, int sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
values - Per-example value.
-
int
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(ValueTuple<PythonClassContainer, PythonClassContainer> values, IEnumerable<object> sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
ValueTuple<PythonClassContainer, PythonClassContainer>
values - Per-example value.
-
IEnumerable<object>
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(IEnumerable<IGraphNodeBase> values, object sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IEnumerable<IGraphNodeBase>
values - Per-example value.
-
object
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(IEnumerable<IGraphNodeBase> values, IGraphNodeBase sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IEnumerable<IGraphNodeBase>
values - Per-example value.
-
IGraphNodeBase
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(IEnumerable<IGraphNodeBase> values, int sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IEnumerable<IGraphNodeBase>
values - Per-example value.
-
int
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(IEnumerable<IGraphNodeBase> values, IEnumerable<object> sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IEnumerable<IGraphNodeBase>
values - Per-example value.
-
IEnumerable<object>
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state(IGraphNodeBase values, object sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
IGraphNodeBase
values - Per-example value.
-
object
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
object update_state_dyn(object values, object sample_weight)
Accumulates statistics for computing the element-wise mean.
Parameters
-
object
values - Per-example value.
-
object
sample_weight - Optional weighting of each example. Defaults to 1.
Returns
-
object
- Update op.
Public static methods
Sum NewDyn(ImplicitContainer<T> name, object dtype)
Creates a `MeanMetricWrapper` instance.
Parameters
-
ImplicitContainer<T>
name - (Optional) string name of the metric instance.
-
object
dtype - (Optional) data type of the metric result.